These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

30 related articles for article (PubMed ID: 4604273)

  • 1. Alteration of flow-induced dilatation in mesenteric resistance arteries of L-NAME treated rats and its partial association with induction of cyclo-oxygenase-2.
    Henrion D; Dechaux E; Dowell FJ; Maclour J; Samuel JL; Lévy BI; Michel JB
    Br J Pharmacol; 1997 May; 121(1):83-90. PubMed ID: 9146891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic structure and reactivity of muscular arteries as revealed by the freeze-drying method.
    Rossmann P; Vávra I
    Folia Morphol (Praha); 1972; 20(3):262-4. PubMed ID: 4559935
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparison of the contractile and calcium-increasing properties of platelet-activating factor and endothelin-1 in the rat mesenteric artery and vein.
    Claing A; Shbaklo H; Plante M; Bkaily G; D'Orléans-Juste P
    Br J Pharmacol; 2002 Jan; 135(2):433-43. PubMed ID: 11815379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A TRPC-like non-selective cation current activated by alpha 1-adrenoceptors in rat mesenteric artery smooth muscle cells.
    Hill AJ; Hinton JM; Cheng H; Gao Z; Bates DO; Hancox JC; Langton PD; James AF
    Cell Calcium; 2006 Jul; 40(1):29-40. PubMed ID: 16697039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered myogenic constriction and endothelium-derived hyperpolarizing factor-mediated relaxation in small mesenteric arteries of hypertensive subtotally nephrectomized rats.
    Vettoretti S; Ochodnicky P; Buikema H; Henning RH; Kluppel CA; de Zeeuw D; van Dokkum RP
    J Hypertens; 2006 Nov; 24(11):2215-23. PubMed ID: 17053543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arterial function after trichlormethiazide therapy in spontaneously hypertensive rats.
    Kähönen M; Mäkynen H; Arvola P; Wuorela H; Pörsti I
    J Pharmacol Exp Ther; 1995 Mar; 272(3):1223-30. PubMed ID: 7891337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 5-hydroxytryptamine2B receptor and 5-HT receptor signal transduction in mesenteric arteries from deoxycorticosterone acetate-salt hypertensive rats.
    Watts SW; Baez M; Webb RC
    J Pharmacol Exp Ther; 1996 May; 277(2):1103-13. PubMed ID: 8627522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: a novel mechanism involved in myogenic constriction.
    Scotland RS; Chauhan S; Davis C; De Felipe C; Hunt S; Kabir J; Kotsonis P; Oh U; Ahluwalia A
    Circ Res; 2004 Nov; 95(10):1027-34. PubMed ID: 15499026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel role for cholecystokinin: regulation of mesenteric vascular resistance.
    Sánchez-Fernández C; González MC; Beart PM; Mercer LD; Ruiz-Gayo M; Fernández-Alfonso MS
    Regul Pept; 2004 Sep; 121(1-3):145-53. PubMed ID: 15256285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro continuous amperometry with a diamond microelectrode coupled with video microscopy for simultaneously monitoring endogenous norepinephrine and its effect on the contractile response of a rat mesenteric artery.
    Park J; Galligan JJ; Fink GD; Swain GM
    Anal Chem; 2006 Oct; 78(19):6756-64. PubMed ID: 17007494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiotensin II attenuates vascular contractility in the rabbit mesenteric artery.
    Oike M; Takahashi N; Ito Y
    Biochem Biophys Res Commun; 1996 May; 222(2):208-14. PubMed ID: 8670184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of clenbuterol on non-endothelial nitric oxide release in rat mesenteric arteries and the involvement of beta-adrenoceptors.
    Marín J; Balfagón G
    Br J Pharmacol; 1998 Jun; 124(3):473-8. PubMed ID: 9647470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial cell loss enhances the pressor response in resistance vessels.
    Criscione L; Müller K; Forney Prescott M
    J Hypertens Suppl; 1984 Dec; 2(3):S441-4. PubMed ID: 6599695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diadenosine polyphosphates cause contraction and relaxation in isolated rat resistance arteries.
    Steinmetz M; Schlatter E; Boudier HA; Rahn KH; De Mey JG
    J Pharmacol Exp Ther; 2000 Sep; 294(3):1175-81. PubMed ID: 10945874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contraction of the vascular muscle tissue: does it generate constriction or dilatation?
    Dragomir C; Ungureanu D
    Physiol Chem Phys; 1974; 6(2):187-90. PubMed ID: 4604273
    [No Abstract]   [Full Text] [Related]  

  • 16. Response of vascular smooth muscle to rapid load changes [proceedings].
    Mulvany MJ
    J Physiol; 1978 Jul; 280():28P-29P. PubMed ID: 690878
    [No Abstract]   [Full Text] [Related]  

  • 17. Preservation of vascular function in rat mesenteric resistance arteries following cold storage, studied by small vessel myography.
    McIntyre CA; Williams BC; Lindsay RM; McKnight JA; Hadoke PW
    Br J Pharmacol; 1998 Apr; 123(8):1555-60. PubMed ID: 9605561
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.