These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 460437)
21. [Role of conformational sub-states on the reaction capacity of protein molecules]. Gol'danskiĭ VI; Krupianskiĭ IuF; Frolov EN Mol Biol (Mosk); 1983; 17(3):532-42. PubMed ID: 6877231 [TBL] [Abstract][Full Text] [Related]
22. Thermal expansion of a protein. Frauenfelder H; Hartmann H; Karplus M; Kuntz ID; Kuriyan J; Parak F; Petsko GA; Ringe D; Tilton RF; Connolly ML Biochemistry; 1987 Jan; 26(1):254-61. PubMed ID: 3828301 [TBL] [Abstract][Full Text] [Related]
23. Reaction of myoglobin with phenylhydrazine: a molecular doorstop. Ringe D; Petsko GA; Kerr DE; Ortiz de Montellano PR Biochemistry; 1984 Jan; 23(1):2-4. PubMed ID: 6691963 [TBL] [Abstract][Full Text] [Related]
24. Estimation of uncertainties in X-ray refinement results by use of perturbed structures. Kuriyan J; Karplus M; Petsko GA Proteins; 1987; 2(1):1-12. PubMed ID: 3447165 [TBL] [Abstract][Full Text] [Related]
25. Modelling the unusual temperature dependence of atomic displacements in proteins by local nonharmonic potentials. Gavish B Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6868-72. PubMed ID: 6947262 [TBL] [Abstract][Full Text] [Related]
27. Mapping protein dynamics by X-ray diffraction. Ringe D; Petsko GA Prog Biophys Mol Biol; 1985; 45(3):197-235. PubMed ID: 3892584 [No Abstract] [Full Text] [Related]
28. X-ray crystallographic studies of seal myoglobin. The molecule at 2.5 A resolution. Scouloudi H; Baker EN J Mol Biol; 1978 Dec; 126(4):637-60. PubMed ID: 745243 [No Abstract] [Full Text] [Related]
29. Tracking ligand-migration pathways of carbonmonoxy myoglobin in crystals at cryogenic temperatures. Tomita A; Sato T; Nozawa S; Koshihara SY; Adachi S Acta Crystallogr A; 2010 Mar; 66(Pt 2):220-8. PubMed ID: 20164645 [TBL] [Abstract][Full Text] [Related]
30. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR). Miller LM; Pedraza AJ; Chance MR Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857 [TBL] [Abstract][Full Text] [Related]
31. Exploration of disorder in protein structures by X-ray restrained molecular dynamics. Kuriyan J; Osapay K; Burley SK; Brünger AT; Hendrickson WA; Karplus M Proteins; 1991; 10(4):340-58. PubMed ID: 1946343 [TBL] [Abstract][Full Text] [Related]
32. Some new methods and general results of analysis of protein crystallographic structural data. Srinivasan R; Balasubramanian R; Rajan SS J Mol Biol; 1975 Nov; 98(4):739-47. PubMed ID: 1195407 [No Abstract] [Full Text] [Related]
33. Refinement of protein dynamic structure: normal mode refinement. Kidera A; Go N Proc Natl Acad Sci U S A; 1990 May; 87(10):3718-22. PubMed ID: 2339115 [TBL] [Abstract][Full Text] [Related]
34. Protein conformations explored by difference high-angle solution X-ray scattering: oxidation state and temperature dependent changes in cytochrome C. Tiede DM; Zhang R; Seifert S Biochemistry; 2002 May; 41(21):6605-14. PubMed ID: 12022864 [TBL] [Abstract][Full Text] [Related]
35. Binding mode of azide to ferric Aplysia limacina myoglobin. Crystallographic analysis at 1.9 A resolution. Mattevi A; Gatti G; Coda A; Rizzi M; Ascenzi P; Brunori M; Bolognesi M J Mol Recognit; 1991 Feb; 4(1):1-6. PubMed ID: 1931125 [TBL] [Abstract][Full Text] [Related]
36. Normal mode refinement: crystallographic refinement of protein dynamic structure. I. Theory and test by simulated diffraction data. Kidera A; Go N J Mol Biol; 1992 May; 225(2):457-75. PubMed ID: 1593630 [TBL] [Abstract][Full Text] [Related]
37. A novel and simple interpretation of the three-dimensional structure of globular proteins based on quantum mechanical computations on small model molecules. II. The clusters of myoglobin. Peters D; Peters J Biopolymers; 1986 Jun; 25(6):1109-32. PubMed ID: 3730517 [No Abstract] [Full Text] [Related]
38. Electrostatic modification of the active site of myoglobin: characterization of the proximal Ser92Asp variant. Lloyd E; Burk DL; Ferrer JC; Maurus R; Doran J; Carey PR; Brayer GD; Mauk AG Biochemistry; 1996 Sep; 35(36):11901-12. PubMed ID: 8794773 [TBL] [Abstract][Full Text] [Related]
39. Determination of the crystal structure of recombinant pig myoglobin by molecular replacement and its refinement. Smerdon SJ; Oldfield TJ; Dodson EJ; Dodson GG; Hubbard RE; Wilkinson AJ Acta Crystallogr B; 1990 Jun; 46 ( Pt 3)():370-7. PubMed ID: 2383370 [TBL] [Abstract][Full Text] [Related]
40. X-ray structure analysis of a metalloprotein with enhanced active-site resolution using in situ x-ray absorption near edge structure spectroscopy. Arcovito A; Benfatto M; Cianci M; Hasnain SS; Nienhaus K; Nienhaus GU; Savino C; Strange RW; Vallone B; Della Longa S Proc Natl Acad Sci U S A; 2007 Apr; 104(15):6211-6. PubMed ID: 17404234 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]