BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 4604425)

  • 41. Soluble factors required for eukaryotic protein synthesis.
    Weissbach H; Ochoa S
    Annu Rev Biochem; 1976; 45():191-216. PubMed ID: 786149
    [No Abstract]   [Full Text] [Related]  

  • 42. The binding of aminoacyl-transfer ribonucleic acid to wheat ribosomes.
    Allende JE; Tarragó A; Monasterio O; Litvak S; Gatica M; Ojeda JM; Matamala M
    Biochem Soc Symp; 1973; (38):77-96. PubMed ID: 4807464
    [No Abstract]   [Full Text] [Related]  

  • 43. Inhibition by aminoacyl transfer ribonucleic acid of elongation factor G-dependent binding of guanosine nucleotide to ribosomes.
    Modolell J; Vazquez D
    J Biol Chem; 1973 Jan; 248(2):488-93. PubMed ID: 4567784
    [No Abstract]   [Full Text] [Related]  

  • 44. Assay for nonenzymatic and enzymatic translocation with Escherichia coli ribosomes.
    Pestka S
    Methods Enzymol; 1974; 30():462-70. PubMed ID: 4604126
    [No Abstract]   [Full Text] [Related]  

  • 45. Interactions of periodate-oxidized guanine nucleotides with Escherichia coli elongation factor G and the ribosome.
    Bodley JW; Gordon J
    Biochemistry; 1974 Jul; 13(16):3401-5. PubMed ID: 4366474
    [No Abstract]   [Full Text] [Related]  

  • 46. The binding of Escherichia coli elongation factor G to the ribosome.
    Bodley JW; Weissbach H; Brot N
    Methods Enzymol; 1974; 30():235-8. PubMed ID: 4605219
    [No Abstract]   [Full Text] [Related]  

  • 47. Soluble protein factors and ribosomal subunits from yeast. Interactions with aminoacyl-tRNA.
    Toraño A; Sandoval A; Heredia CF
    Methods Enzymol; 1974; 30():254-61. PubMed ID: 4854318
    [No Abstract]   [Full Text] [Related]  

  • 48. Relation between the ribosomal sites involved in initiation and elongation of polypeptide chains. Evidence for two guanosine triphosphatase sites.
    Lockwood AH; Maitra U
    J Biol Chem; 1974 Jan; 249(2):346-52. PubMed ID: 4358547
    [No Abstract]   [Full Text] [Related]  

  • 49. Interaction of eukaryote initiator methionyl-tRNA with the eukaryote equivalent of bacterial elongation factor T and guanosine triphosphate.
    Richter D; Lipmann F; Tarragó A; Allende JE
    Proc Natl Acad Sci U S A; 1971 Aug; 68(8):1805-9. PubMed ID: 5288767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Letters to the editor: Nuclear magnetic resonance studies of protein-RNA interactions. I. The elongation factor Tu-GTP aminoacyl-tRNA complex.
    Schulman RG; Hilbers CW; Miller DL
    J Mol Biol; 1974 Dec; 90(3):601-7. PubMed ID: 4615172
    [No Abstract]   [Full Text] [Related]  

  • 51. Aminoacyl-tRNA binding sites in E. coli and reticulocyte ribosomes.
    Busiello E; Di Girolamo M
    FEBS Lett; 1973 Sep; 35(2):341-3. PubMed ID: 4582948
    [No Abstract]   [Full Text] [Related]  

  • 52. Role of guanine nucleotides in protein synthesis. Elongation factor G and guanosine 5'-triphosphate,3'-diphosphate.
    Hamel E; Cashel M
    Proc Natl Acad Sci U S A; 1973 Nov; 70(11):3250-4. PubMed ID: 4594040
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of L-1-tosylamido-2-phenylethyl chloromethyl ketone on the activity of procaryote and eucaryote tRNA binding factors.
    Highland JH; Smith RL; Burka E; Gordon J
    FEBS Lett; 1974 Feb; 39(1):96-8. PubMed ID: 4605249
    [No Abstract]   [Full Text] [Related]  

  • 54. The reactions of the sulfhydryl groups on the elongation factors Tu and Ts.
    Miller DL; Hachmann J; Weissbach H
    Arch Biochem Biophys; 1971 May; 144(1):115-21. PubMed ID: 4940596
    [No Abstract]   [Full Text] [Related]  

  • 55. Structural change of the Phe-tRNA Phe-(CCCA) and the effect on the rate of peptide formation.
    Thang MN; Dondon L; Rether B
    FEBS Lett; 1974 Mar; 40(1):67-71. PubMed ID: 4605148
    [No Abstract]   [Full Text] [Related]  

  • 56. Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes.
    Ravel JM
    Proc Natl Acad Sci U S A; 1967 Jun; 57(6):1811-6. PubMed ID: 5340636
    [No Abstract]   [Full Text] [Related]  

  • 57. Interaction of elongation factor Tu with 2'(3')-O-aminoacyloligonucleotides derived from the 3' terminus of aminoacyl-tRNA.
    Ringer D; Chládek S
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2950-4. PubMed ID: 1059085
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative study of the interaction of aminoacyl-tRNA with the a site of Escherichia coli ribosomes: equilibrium and kinetic parameters of binding in the absence of EF-Tu factor and GTP.
    Kemkhadze KS; Odintsov VB; Semenkov YP; Kirillov SV
    FEBS Lett; 1981 Mar; 125(1):10-4. PubMed ID: 7014250
    [No Abstract]   [Full Text] [Related]  

  • 59. Photo-affinity labeling of tRNA binding sites in macromolecules. I. Linking of the phenacyl-p-azide of 4-thiouridine in (Escherichia coli) valyl-tRNA to 16S RNA at the ribosomal P site.
    Schwartz I; Ofengand J
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):3951-5. PubMed ID: 4610566
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interference of virginiamycin M with the initiation and the elongation of peptide chains in cell-free systems.
    Cocito C; Voorma HO; Bosch L
    Biochim Biophys Acta; 1974 Mar; 340(3):285-98. PubMed ID: 4596864
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.