These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 4604426)

  • 21. Interactions of periodate-oxidized guanine nucleotides with Escherichia coli elongation factor G and the ribosome.
    Bodley JW; Gordon J
    Biochemistry; 1974 Jul; 13(16):3401-5. PubMed ID: 4366474
    [No Abstract]   [Full Text] [Related]  

  • 22. Guanosine triphosphate and guanosine diphosphate as conformation-determining molecules. Differential interaction of a fluorescent probe with the guanosine nucleotide complexes of bacterial elongation factor Tu.
    Crane LJ; Miller DL
    Biochemistry; 1974 Feb; 13(5):933-8. PubMed ID: 4591619
    [No Abstract]   [Full Text] [Related]  

  • 23. Soluble factors required for eukaryotic protein synthesis.
    Weissbach H; Ochoa S
    Annu Rev Biochem; 1976; 45():191-216. PubMed ID: 786149
    [No Abstract]   [Full Text] [Related]  

  • 24. The isolation and characterization of elongation factor eEF-Ts from Krebs-II mouse-ascites-tumor cells and its role in the elongation process.
    Grasmuk H; Nolan RD; Drews J
    Eur J Biochem; 1978 Dec; 92(2):479-90. PubMed ID: 738276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The binding of the pyrophosphoryl transferase and the elongation factor Tu and G to ribosomes from Escherichia coli.
    Kleinert U; Richter D
    FEBS Lett; 1975 Jul; 55(1):188-93. PubMed ID: 166884
    [No Abstract]   [Full Text] [Related]  

  • 26. Interaction of the low molecular weight form of elongation factor 1 with guanine nucleotides and aminoacyl-tRNA.
    Nagata S; Iwasaki K; Kaziro Y
    Arch Biochem Biophys; 1976 Jan; 172(1):168-77. PubMed ID: 1252073
    [No Abstract]   [Full Text] [Related]  

  • 27. Sequence of events in initiation of protein synthesis.
    Benne R; Ebes F; Voorma HO
    Eur J Biochem; 1973 Oct; 38(2):265-73. PubMed ID: 4129820
    [No Abstract]   [Full Text] [Related]  

  • 28. Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes.
    Ravel JM
    Proc Natl Acad Sci U S A; 1967 Jun; 57(6):1811-6. PubMed ID: 5340636
    [No Abstract]   [Full Text] [Related]  

  • 29. Binding of aminoacyl-tRNA to ribosomes promoted by elongation factor Tu. Studies on the role of GTP hydrolysis.
    Yokosawa H; Kawakita M; Arai K; Inoue-Yokosawa N; Kaziro Y
    J Biochem; 1975 Apr; 77(4):719-28. PubMed ID: 1097432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modification of elongation-factor-Tu . guanine-nucleotide interaction by kirromycin. A comparison with the effect of aminoacyl-tRNA and elongation factor Ts.
    Fasano O; Bruns W; Crechet JB; Sander G; Parmeggiani A
    Eur J Biochem; 1978 Sep; 89(2):557-65. PubMed ID: 251130
    [No Abstract]   [Full Text] [Related]  

  • 31. The role of guanosine triphosphate in translocation reaction catalyzed by elongation factor G.
    Inoue-Yokosawa N; Ishikawa C; Kaziro Y
    J Biol Chem; 1974 Jul; 249(13):4321-3. PubMed ID: 4605331
    [No Abstract]   [Full Text] [Related]  

  • 32. Magic spot metabolism in an Escherichia coli mutant temperature sensitive in elongation factor Ts.
    Glazier K; Schlessinger D
    J Bacteriol; 1974 Mar; 117(3):1195-200. PubMed ID: 4591947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new concept of the function of elongation factor 1 in peptid chain elongation.
    Grasmuk H; Nolan RD; Drews J
    Eur J Biochem; 1976 Dec; 71(1):271-9. PubMed ID: 1009951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A complex between initiation factor IF2, guanosine triphosphate, and fMet-tRNA: an intermediate in initiation complex formation.
    Lockwood AH; Chakraborty PR; Maitra U
    Proc Natl Acad Sci U S A; 1971 Dec; 68(12):3122-6. PubMed ID: 4943554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of guanine nucleotides in protein synthesis. Elongation factor G and guanosine 5'-triphosphate,3'-diphosphate.
    Hamel E; Cashel M
    Proc Natl Acad Sci U S A; 1973 Nov; 70(11):3250-4. PubMed ID: 4594040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the polypeptide elongation factors from E. coli. V. Properties of various complexes containing EF-Tu and EF-Ts.
    Arai K; Kawakita M; Kaziro Y
    J Biochem; 1974 Aug; 76(2):293-306. PubMed ID: 4609971
    [No Abstract]   [Full Text] [Related]  

  • 37. Interactions of the heavy and light forms of elongation factor I with guanine nucleotides and aminoacyl-tRNA.
    Legocki AB; Redfield B; Weissbach H
    Arch Biochem Biophys; 1974 Apr; 161(2):709-12. PubMed ID: 4839057
    [No Abstract]   [Full Text] [Related]  

  • 38. Structural change of the Phe-tRNA Phe-(CCCA) and the effect on the rate of peptide formation.
    Thang MN; Dondon L; Rether B
    FEBS Lett; 1974 Mar; 40(1):67-71. PubMed ID: 4605148
    [No Abstract]   [Full Text] [Related]  

  • 39. Interaction of Escherichia coli EF-Tu.GTP and EF-Tu.GDP with analogues of the 3' terminus of aminoacyl-tRNA.
    Jonák J; Smrt J; Holý A; Rychlík I
    Eur J Biochem; 1980 Apr; 105(2):315-20. PubMed ID: 6991255
    [No Abstract]   [Full Text] [Related]  

  • 40. A functionally active tryptic fragment of Escherichia coli elongation factor Tu.
    Jacobson GR; Rosenbusch JP
    Biochemistry; 1976 Nov; 15(23):5105-110. PubMed ID: 791363
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.