These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 4604751)

  • 1. Membrane transport as a potential target for antibiotic action.
    Walsh CT; Kaback HR
    Ann N Y Acad Sci; 1974 May; 235(0):519-41. PubMed ID: 4604751
    [No Abstract]   [Full Text] [Related]  

  • 2. Vinylglycolic acid. An inactivator of the phosphoenolpyruvate-phosphate transferase system in Escherichia coli.
    Walsh CT; Kaback HR
    J Biol Chem; 1973 Aug; 248(15):5456-62. PubMed ID: 4588683
    [No Abstract]   [Full Text] [Related]  

  • 3. Vinylglycolate resistance in Escherichia coli.
    Shaw L; Grau F; Kaback HR; Hong JS; Walsh C
    J Bacteriol; 1975 Mar; 121(3):1047-55. PubMed ID: 1090585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of lactate and succinate by membrane vesicles of Escherichia coli, Bacillus subtilis and a pseudomonas species.
    Matin A; Konings WN
    Eur J Biochem; 1973 Apr; 34(1):58-67. PubMed ID: 4349657
    [No Abstract]   [Full Text] [Related]  

  • 5. Transport across isolated bacterial cytoplasmic membranes.
    Kaback HR
    Biochim Biophys Acta; 1972 Aug; 265(3):367-416. PubMed ID: 4581579
    [No Abstract]   [Full Text] [Related]  

  • 6. Sugar transport. VII. Lactose transport in Staphylococcus aureus.
    Simoni RD; Roseman S
    J Biol Chem; 1973 Feb; 248(3):966-74. PubMed ID: 4684717
    [No Abstract]   [Full Text] [Related]  

  • 7. The localization of glycerol-3-phosphate dehydrogenase in Escherichia coli.
    Weiner JH
    J Membr Biol; 1974; 15(1):1-14. PubMed ID: 4600804
    [No Abstract]   [Full Text] [Related]  

  • 8. Dehydrogenase activity involved in the uptake of glucose 6-phosphate by a bacterial membrane system.
    Dietz GW
    J Biol Chem; 1972 Jul; 247(14):4561-5. PubMed ID: 4557845
    [No Abstract]   [Full Text] [Related]  

  • 9. Reconstitution of transport dependent on D-lactate or glycerol 3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases.
    Futai M
    Biochemistry; 1974 May; 13(11):2327-33. PubMed ID: 4598623
    [No Abstract]   [Full Text] [Related]  

  • 10. Mechanisms of active transport in isolated bacterial membrane vesicles. X. Inactivation of D-lactate dehydrogenase and D-lactate dehydrogenase-coupled transport in Escherichia coli membrane vesicles by an acetylenic substrate.
    Walsh CT; Abeles RH; Kaback HR
    J Biol Chem; 1972 Dec; 247(24):7858-63. PubMed ID: 4565667
    [No Abstract]   [Full Text] [Related]  

  • 11. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles.
    Lombardi FJ; Reeves JP; Short SA; Kaback HR
    Ann N Y Acad Sci; 1974 Feb; 227():312-27. PubMed ID: 4363926
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles.
    Barnes EM; Kaback HR
    J Biol Chem; 1971 Sep; 246(17):5518-22. PubMed ID: 4330922
    [No Abstract]   [Full Text] [Related]  

  • 13. The bacterial phosphoenolpyruvate: sugar phosphotransferase system.
    Postma PW; Roseman S
    Biochim Biophys Acta; 1976 Dec; 457(3-4):213-57. PubMed ID: 187249
    [No Abstract]   [Full Text] [Related]  

  • 14. Active transport in bacterial cytoplasmic membrane vesicles.
    Kaback HR
    Symp Soc Exp Biol; 1973; 27():145-74. PubMed ID: 4594375
    [No Abstract]   [Full Text] [Related]  

  • 15. A spin-label study of energy-coupled active transport in Escherichia coli membrane vesicles.
    Baldassare JJ; Robertson DE; McAfee AG; Ho C
    Biochemistry; 1974 Dec; 13(25):5210-4. PubMed ID: 4373033
    [No Abstract]   [Full Text] [Related]  

  • 16. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane.
    Reider E; Wagner EF; Schweiger M
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5529-33. PubMed ID: 392504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D-lactate dehydrogenase binding in Escherichia coli dld- membrane vesicles reconstituted for active transport.
    Short SA; Kaback HR; Kohn LD
    Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1461-5. PubMed ID: 4598306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymology of carbohydrate transport in bacteria.
    Hengstenberg W
    Curr Top Microbiol Immunol; 1977; 77():97-126. PubMed ID: 336299
    [No Abstract]   [Full Text] [Related]  

  • 19. Coupling of energy to active transport of amino acids in Escherichia coli.
    Simoni RD; Shallenberger MK
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2663-7. PubMed ID: 4341704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutants of Salmonella typhimurium and Escherichia coli pleiotropically defective in active transport.
    Hong JS; Kaback HR
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3336-40. PubMed ID: 4343963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.