These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 4604809)

  • 1. Negative cooperativity and half of the sites reactivity. Alkaline phosphatases of Escherichia coli with Zn2+, Co2+, Cd2+, Mn2+, and Cu2+ in the active sites.
    Chappelet-Tordo D; Iwatsubo M; Lazdunski M
    Biochemistry; 1974 Aug; 13(18):3754-62. PubMed ID: 4604809
    [No Abstract]   [Full Text] [Related]  

  • 2. Zn2+ and Co2+-alkaline phosphatases of E. coli. A comparative kinetic study.
    Lazdunski C; Lazdunski M
    Eur J Biochem; 1969 Jan; 7(2):294-300. PubMed ID: 4885467
    [No Abstract]   [Full Text] [Related]  

  • 3. A proton relaxation rate study of the copper analog of Escherichia coli alkaline phosphatase.
    Zukin RS; Hollis DP
    J Biol Chem; 1974 Jan; 249(2):656-8. PubMed ID: 4358560
    [No Abstract]   [Full Text] [Related]  

  • 4. A mutationally altered alkaline phosphatase from Escherichia coli. I. Formation of an active enzyme in vitro and phenotypic suppression in vivo.
    Halford SE; Lennette DA; Kelley PM; Schlesinger MJ
    J Biol Chem; 1972 Apr; 247(7):2087-94. PubMed ID: 4552687
    [No Abstract]   [Full Text] [Related]  

  • 5. Kinetics of substrate hydrolysis by molecular variants of Escherichia coli alkaline phosphatase.
    Bloch W; Schlesinger MJ
    J Biol Chem; 1974 Mar; 249(6):1760-8. PubMed ID: 4594238
    [No Abstract]   [Full Text] [Related]  

  • 6. Structural and activational zinc in Escherichia coli alkaline phosphatase.
    Trotman CN; Greenwood C
    Biochem J; 1971 Jan; 121(1):12P. PubMed ID: 5000593
    [No Abstract]   [Full Text] [Related]  

  • 7. Metallocarboxypeptidases: a cadmium-carboxypeptidase B with peptidase activity.
    Zisapel N; Sokolovsky M
    Biochem Biophys Res Commun; 1973 Aug; 53(3):722-9. PubMed ID: 4731950
    [No Abstract]   [Full Text] [Related]  

  • 8. Escherichia coli Co(II) alkaline phosphatase. Absorption, circular dichroism, and magnetic circular dichroism of the d-d electronic transitions.
    Taylor JS; Lau CY; Applebury ML; Coleman JE
    J Biol Chem; 1973 Sep; 248(17):6216-20. PubMed ID: 4580054
    [No Abstract]   [Full Text] [Related]  

  • 9. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of alkaline phosphatase by analogs of inorganic pyrophosphate.
    Kelly SH; Sperow JW; Butler LG
    Biochemistry; 1974 Aug; 13(17):3503-5. PubMed ID: 4367425
    [No Abstract]   [Full Text] [Related]  

  • 11. Cobalt substituted zinc metalloenzymes.
    Vallee BL
    Adv Exp Med Biol; 1973; 40():1-12. PubMed ID: 4588739
    [No Abstract]   [Full Text] [Related]  

  • 12. Determination by cadmium-113 nuclear magnetic resonance of the structural basis for metal ion dependent anticooperativity in alkaline phosphatase.
    Otvos JD; Armitage IM
    Biochemistry; 1980 Aug; 19(17):4031-43. PubMed ID: 6996715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of the Zn2+ and Co2+-alkaline phosphatase of E. coli. Number of sites and anticooperativity.
    Lazdunski C; Petitclerc C; Chappelet D; Lazdunski M
    Biochem Biophys Res Commun; 1969 Nov; 37(5):744-9. PubMed ID: 4900985
    [No Abstract]   [Full Text] [Related]  

  • 14. Structure-function relationships for some metalloalkaline phosphatases of E. coli.
    Lazdunski C; Petitclerc C; Lazdunski M
    Eur J Biochem; 1969 Apr; 8(4):510-7. PubMed ID: 4978714
    [No Abstract]   [Full Text] [Related]  

  • 15. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metalloenzymes.
    Wacker WE
    Fed Proc; 1970; 29(4):1462-8. PubMed ID: 4918200
    [No Abstract]   [Full Text] [Related]  

  • 17. Hydrogen-tritium exchange of partially and fully reconstituted zinc and cobalt alkaline phosphatase of Escherichia coli.
    Brown EM; Ulmer DD; Vallee BL
    Biochemistry; 1974 Dec; 13(26):5328-34. PubMed ID: 4611482
    [No Abstract]   [Full Text] [Related]  

  • 18. Mechanisms of hydrolysis of O-phosphorothioates and inorganic thiophosphate by Escherichia coli alkaline phosphatase.
    Chlebowski JF; Coleman JE
    J Biol Chem; 1974 Nov; 249(22):7192-202. PubMed ID: 4612034
    [No Abstract]   [Full Text] [Related]  

  • 19. Metallophosphoryl and Apophosphoryl Alkaline Phosphatases.
    Chlebowski JF; Coleman JE
    J Biol Chem; 1976 Feb; 251(4):1202-6. PubMed ID: 2605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal ion-induced conformational changes in Escherichia coli alkaline phosphatase.
    Szajn H; Csopak H
    Biochim Biophys Acta; 1977 Jan; 480(1):143-53. PubMed ID: 12823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.