These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 4605066)

  • 21. Peptidyl transferase: a new method for kinetic studies.
    Fico R; Coutsogeorgopoulos C
    Biochem Biophys Res Commun; 1972 May; 47(3):645-51. PubMed ID: 4556827
    [No Abstract]   [Full Text] [Related]  

  • 22. Interactions between elongation factor tu-guanosine triphosphate and ribosomes and the role of ribosome-bound transfer RNA in guanosine triphosphatase reaction.
    Kawakita M; Arai K; Kaziro Y
    J Biochem; 1974 Oct; 76(4):801-9. PubMed ID: 4373450
    [No Abstract]   [Full Text] [Related]  

  • 23. Peptidyl transferase inhibitors alter the covalent reaction of BrAcPhe-tRNA with the E. coli ribosome.
    Oen H; Pellegrini M; Cantor CR
    FEBS Lett; 1974 Sep; 45(1):218-22. PubMed ID: 4606896
    [No Abstract]   [Full Text] [Related]  

  • 24. Assay of ester and polyester formation by the ribosomal peptidyltransferase.
    Fahnestock S; Neumann H; Rich A
    Methods Enzymol; 1974; 30():489-97. PubMed ID: 4604128
    [No Abstract]   [Full Text] [Related]  

  • 25. Investigation of the ribosomal peptidyl transferase center using a photoaffinity label.
    Hsiung N; Reines SA; Cantor CR
    J Mol Biol; 1974 Oct; 88(4):841-55. PubMed ID: 4610161
    [No Abstract]   [Full Text] [Related]  

  • 26. Characteristics of N-Ac-Phe-tRNA binding and its correlation with internal aminoacyl-tRNA recognition.
    Springer M; Grunberg-Manago M
    Biochem Biophys Res Commun; 1972 Apr; 47(2):477-84. PubMed ID: 4575689
    [No Abstract]   [Full Text] [Related]  

  • 27. Protein synthesis in a cell-free system prepared from human placenta. II. pH 5 enzyme inefficiency due to defects in tRNA charging with resulting loss of elongation factor 1.
    Hubert C; Baliga BS; Villee CA; Munro HN
    Biochim Biophys Acta; 1974 Dec; 374(3):359-74. PubMed ID: 4611498
    [No Abstract]   [Full Text] [Related]  

  • 28. The effect of L-1-tosylamido-2-phenylethyl chloromethyl ketone on the activity of procaryote and eucaryote tRNA binding factors.
    Highland JH; Smith RL; Burka E; Gordon J
    FEBS Lett; 1974 Feb; 39(1):96-8. PubMed ID: 4605249
    [No Abstract]   [Full Text] [Related]  

  • 29. Peptidyl transferase activity in rat skeletal muscle ribosomes after protein restriction.
    von der Decken A
    J Nutr; 1977 Jul; 107(7):1335-9. PubMed ID: 195020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substrate specificity of Escherichia coli peptidyl-transferase.
    Panet A; de Groot N; Lapidot Y
    Eur J Biochem; 1970 Aug; 15(2):222-5. PubMed ID: 4926128
    [No Abstract]   [Full Text] [Related]  

  • 31. Effect of increasing chain length of AA-oligonucleotide acceptors on their reactivity at the peptidyl transferase center in ribosomes and polysomes.
    Hussain Z; Ofengand J
    Biochem Biophys Res Commun; 1972 Dec; 49(6):1588-97. PubMed ID: 4565379
    [No Abstract]   [Full Text] [Related]  

  • 32. Enhancement of the phenylalanyl-oligonucleotide binding to the peptidyl recognition center of ribosomal peptidyltransferase and inhibition of the chloramphenicol binding to ribosomes.
    Yukioka M; Morisawa S
    Biochim Biophys Acta; 1971 Dec; 254(2):304-15. PubMed ID: 4944565
    [No Abstract]   [Full Text] [Related]  

  • 33. Photoaffinity labeling of the ribosomal peptidyl transferase site with synthetic puromycin analogues.
    Vince R; Brownell J; Fong KL
    Biochemistry; 1978 Dec; 17(25):5489-93. PubMed ID: 365231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of N-acetylphenylalanyl transfer ribonucleic acid binding to 30S ribosomal subunit of Escherichia coli by N-formylmethionyl transfer ribonucleic acid.
    Blumberg BM; Bernal SD; Nakamoto T
    Biochemistry; 1974 Jul; 13(16):3307-11. PubMed ID: 4601432
    [No Abstract]   [Full Text] [Related]  

  • 35. E. coli 30 S and 50 S ribosomal subparticle components in the localization region of the tRNA acceptor terminus.
    Girshovich AS; Bochkareva ES; Kramarov VM; Ovchinnikov YuA
    FEBS Lett; 1974 Sep; 45(1):213-7. PubMed ID: 4606460
    [No Abstract]   [Full Text] [Related]  

  • 36. Ribosomal activities dependent on elongation factors T and G. Effects of methanol.
    Ballesta JP; Vazquez D
    Biochemistry; 1973 Dec; 12(25):5063-8. PubMed ID: 4366079
    [No Abstract]   [Full Text] [Related]  

  • 37. Catalysis of the peptide bond formation by 50 S subunits of E. coli ribosomes with N-(formyl) methionine ester of adenylic acid as peptide donor.
    Kotusov VV; Kukhanova MK; Krayevsky AA; Gottikh BP
    Mol Biol Rep; 1976 Nov; 3(2):151-6. PubMed ID: 796686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Donor site of E. coli ribosomal peptidyltransferase].
    Kotusov VV; Kukhanova MK; Viktorova LS; KraevskiÄ­ AA; Treboganov AD
    Mol Biol (Mosk); 1976; 10(6):1394-402. PubMed ID: 802787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Post-mortem changes in myocardial aminoacyl synthetase, transferring enzyme activity and ribosomal activity.
    Gibson K; Harris P
    Res Commun Chem Pathol Pharmacol; 1972 Mar; 3(2):359-67. PubMed ID: 4679856
    [No Abstract]   [Full Text] [Related]  

  • 40. Studies on the fluorescence of the Y base of yeast phenylalanine transfer ribonucleic acid. Effect of pH, aminoacylation, and interaction with elongation factor Tu.
    Beres L; Lucas-Lenard J
    Biochemistry; 1973 Sep; 12(20):3998-4002. PubMed ID: 4583317
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.