BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 4606150)

  • 1. A single mutational modification of a tryptophan-specific transfer RNA permits aminoacylation by glutamine and translation of the codon UAG.
    Yaniv M; Folk WR; Berg P; Soll L
    J Mol Biol; 1974 Jun; 86(2):245-60. PubMed ID: 4606150
    [No Abstract]   [Full Text] [Related]  

  • 2. Mutational alterations of tryptophan-specific transfer RNA that generate translation suppressors of the UAA, UAG and UGA nonsense codons.
    Soll L
    J Mol Biol; 1974 Jun; 86(2):233-43. PubMed ID: 4606830
    [No Abstract]   [Full Text] [Related]  

  • 3. Structural changes in the glutamine-chargeable Escherichia coli transfer RNA-Trp produced by chemical modification with sodium bisulfite.
    Iwata K; Yagura T; Takeishi K; Seno T
    Biochim Biophys Acta; 1980 Feb; 606(2):262-73. PubMed ID: 6153535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of Escherichia coli tRNATrp to glutamine-accepting tRNA by chemical modification with sodium bisulfite.
    Seno T
    FEBS Lett; 1975 Mar; 51(1):325-9. PubMed ID: 1091513
    [No Abstract]   [Full Text] [Related]  

  • 5. Involvement of the anticodon region of Escherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl-tRNA synthetase. Alteration of the 2-thiouridine derivatives located in the anticodon of the tRNAs by BrCN or sulfur deprivation.
    Seno T; Agris PF; Söll D
    Biochim Biophys Acta; 1974 May; 349(3):328-38. PubMed ID: 4366808
    [No Abstract]   [Full Text] [Related]  

  • 6. The mechanism of codon-anticodon interaction in ribosomes. Heterogeneity of tRNA complexes with 70-S ribosomes of Escherichia coli.
    Kirillov SV; Makhno VI; Odinzov VB; Semenkov YP
    Eur J Biochem; 1978 Aug; 89(1):305-13. PubMed ID: 359330
    [No Abstract]   [Full Text] [Related]  

  • 7. Expanding the genetic code of Escherichia coli.
    Wang L; Brock A; Herberich B; Schultz PG
    Science; 2001 Apr; 292(5516):498-500. PubMed ID: 11313494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of purified isoacceptor tRNAs for the study of codon-anticodon recognition in vitro with sequenced natural messenger RNA.
    Goldman E; Hatfield GW
    Methods Enzymol; 1979; 59():292-309. PubMed ID: 374943
    [No Abstract]   [Full Text] [Related]  

  • 9. Destabilization of the P site codon-anticodon helix results from movement of tRNA into the P/E hybrid state within the ribosome.
    McGarry KG; Walker SE; Wang H; Fredrick K
    Mol Cell; 2005 Nov; 20(4):613-22. PubMed ID: 16307924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast tRNALeu (anticodon U--A--G) translates all six leucine codons in extracts from interferon treated cells.
    Weissenbach J; Dirheimer G; Falcoff R; Sanceau J; Falcoff E
    FEBS Lett; 1977 Oct; 82(1):71-6. PubMed ID: 334566
    [No Abstract]   [Full Text] [Related]  

  • 11. Conformational changes in tRNA: consequences of aminoacylation and codon--anticodon recognition.
    Dvorak D; Kidson C; Winzor DJ
    FEBS Lett; 1978 Jun; 90(2):187-8. PubMed ID: 352721
    [No Abstract]   [Full Text] [Related]  

  • 12. Switching tRNA(Gln) identity from glutamine to tryptophan.
    Rogers MJ; Adachi T; Inokuchi H; Söll D
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3463-7. PubMed ID: 1565639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of codon-anticodon interaction in ribosomes: comparative study of interaction of Phe-tRNAPhe and N-acetyl-Phe-tRNAPhe with the donor site of Escherichia coli ribosomes.
    Kirillov SV; Katunin VI; Semenkov YP
    FEBS Lett; 1981 Mar; 125(1):15-9. PubMed ID: 7014251
    [No Abstract]   [Full Text] [Related]  

  • 14. On codon- anticodon interactions.
    Grosjean H; Chantrenne H
    Mol Biol Biochem Biophys; 1980; 32():347-67. PubMed ID: 7003350
    [No Abstract]   [Full Text] [Related]  

  • 15. [Mechanism of the stereospecific stabilization of codon-anticodon complexes in ribosomes during translation].
    Potapov AP
    Zh Obshch Biol; 1985; 46(1):63-77. PubMed ID: 3885616
    [No Abstract]   [Full Text] [Related]  

  • 16. Four-base codon-mediated saturation mutagenesis in a cell-free translation system.
    Watanabe T; Muranaka N; Hohsaka T
    J Biosci Bioeng; 2008 Mar; 105(3):211-5. PubMed ID: 18397770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Codon:anticodon and anticodon:anticodon interaction: evaluation of equilibrium and kinetic parameters of complexes involving a g:u wobble.
    Labuda D; Grosjean H; Striker G; Pörschke D
    Biochim Biophys Acta; 1982 Sep; 698(3):230-6. PubMed ID: 6753934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Primary structure of yeast mitochondrial tryptophan-tRNA capable of translating the termination U-G-A codon].
    Sibler AP; Bordonné R; Dirheimer G; Martin R
    C R Seances Acad Sci D; 1980 Mar; 290(11):695-8. PubMed ID: 6769601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of UGA to wild type and suppressor tryptophan tRNA from E. coli.
    Högenauer G
    FEBS Lett; 1974 Mar; 39(3):310-2. PubMed ID: 4368452
    [No Abstract]   [Full Text] [Related]  

  • 20. Role of anticodon bases in aminoacylation of Escherichia coli methionine transfer RNAs.
    Stern L; Schulman LH
    J Biol Chem; 1977 Sep; 252(18):6403-8. PubMed ID: 330530
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.