These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4606575)

  • 1. Galactose-1-phosphate uridylyltransferase: rate studies confirming a uridylyl-enzyme intermediate on the catalytic pathway.
    Wong LJ; Frey PA
    Biochemistry; 1974 Sep; 13(19):3889-94. PubMed ID: 4606575
    [No Abstract]   [Full Text] [Related]  

  • 2. Galactose 1-phosphate uridylyltransferase. Isolation of a uridylyl-enzyme intermediate.
    Wong LJ; Frey PA
    J Biol Chem; 1974 Apr; 249(7):2322-4. PubMed ID: 4594499
    [No Abstract]   [Full Text] [Related]  

  • 3. Galactose-1-phosphate uridylyltransferase: isolation and properties of a uridylyl-enzyme intermediate.
    Wong LJ; Sheu KF; Lee SL; Frey PA
    Biochemistry; 1977 Mar; 16(5):1010-6. PubMed ID: 321007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Galactose-1-phosphate uridylyltransferase. Purification of the enzyme and stereochemical course of each step of the double-displacement mechanism.
    Arabshahi A; Brody RS; Smallwood A; Tsai TC; Frey PA
    Biochemistry; 1986 Sep; 25(19):5583-9. PubMed ID: 3022797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human galactose 1-phosphate uridylyltransferase. Absence of half-reaction activity of galactosemic proteins.
    Wu JW; Tedesco TA; Kallen RG; Mellman WJ
    J Biol Chem; 1974 Nov; 249(21):7038-9. PubMed ID: 4214116
    [No Abstract]   [Full Text] [Related]  

  • 6. UDP-sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide 1-phosphates from pea sprouts.
    Kotake T; Yamaguchi D; Ohzono H; Hojo S; Kaneko S; Ishida HK; Tsumuraya Y
    J Biol Chem; 2004 Oct; 279(44):45728-36. PubMed ID: 15326166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of uridine diphosphate-sugar-4-epimerase reactions. Isotope discrimination with 4-tritiated substrates.
    Maitra US; Gaunt MA; Ankel H
    J Biol Chem; 1974 May; 249(10):3075-8. PubMed ID: 4208471
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinetic and crystallographic analyses support a sequential-ordered bi bi catalytic mechanism for Escherichia coli glucose-1-phosphate thymidylyltransferase.
    Zuccotti S; Zanardi D; Rosano C; Sturla L; Tonetti M; Bolognesi M
    J Mol Biol; 2001 Nov; 313(4):831-43. PubMed ID: 11697907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galactose-1-phosphate uridylyltransferase: identification of histidine-164 and histidine-166 as critical residues by site-directed mutagenesis.
    Field TL; Reznikoff WS; Frey PA
    Biochemistry; 1989 Mar; 28(5):2094-9. PubMed ID: 2541773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of uridine on hepatic galactose-1-phosphate uridyltransferase.
    Rogers S; Bovee BW; Segal S
    Enzyme; 1989; 42(1):53-60. PubMed ID: 2550217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galactose-I-phosphate uridyl transferase: a new manometric assay specially suited to erythrocyte studies in galactosaemia.
    Westwood A; Raine DN
    Clin Chim Acta; 1973 Dec; 49(3):435-43. PubMed ID: 4149601
    [No Abstract]   [Full Text] [Related]  

  • 12. The production of enzymes involved in exopolysaccharide synthesis in Klebsiella aerogenes types 1 and 8.
    Norval M; Sutherland IW
    Eur J Biochem; 1973 Jun; 35(2):209-15. PubMed ID: 4717925
    [No Abstract]   [Full Text] [Related]  

  • 13. Formation of uridine diphosphate sugars from 32P-labeled hexose phosphates in human red blood cells.
    Sawicka T; Chojnacki T
    Clin Chim Acta; 1969 Mar; 23(3):463-8. PubMed ID: 5794485
    [No Abstract]   [Full Text] [Related]  

  • 14. An evaluation of regulation of the hexose monophosphate shunt in Escherichia coli.
    Orthner CL; Pizer LI
    J Biol Chem; 1974 Jun; 249(12):3750-5. PubMed ID: 4151946
    [No Abstract]   [Full Text] [Related]  

  • 15. Competitive inhibition and substrate activity of uridine diphosphate 6-deoxygalactose for Escherichia coli uridine diphosphate galactose 4-epimerase.
    Spencer M; Blackburn P; Ferdinand W; Blackburn GM
    Biochem J; 1973 Feb; 131(2):421-3. PubMed ID: 4578944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleophile in the active site of Escherichia coli galactose-1-phosphate uridylyltransferase: degradation of the uridylyl-enzyme intermediate to N3-phosphohistidine.
    Yang SL; Frey PA
    Biochemistry; 1979 Jul; 18(14):2980-4. PubMed ID: 380639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein.
    Jiang P; Peliska JA; Ninfa AJ
    Biochemistry; 1998 Sep; 37(37):12782-94. PubMed ID: 9737855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Galactose transport in Saccharomyces cerevisiae. 3. Characteristics of galactose uptake in transferaseless cells: evidence against transport-associated phosphorylation.
    Kuo SC; Cirillo VP
    J Bacteriol; 1970 Sep; 103(3):679-85. PubMed ID: 5474883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereochemical courses of nucleotidyltransferase and phosphotransferase action. Uridine diphosphate glucose pyrophosphorylase, galactose-1-phosphate uridylyltransferase, adenylate kinase, and nucleoside diphosphate kinase.
    Sheu KF; Richard JP; Frey PA
    Biochemistry; 1979 Dec; 18(25):5548-56. PubMed ID: 229894
    [No Abstract]   [Full Text] [Related]  

  • 20. Remodeling hexose-1-phosphate uridylyltransferase: mechanism-inspired mutation into a new enzyme, UDP-hexose synthase.
    Kim J; Ruzicka F; Frey PA
    Biochemistry; 1990 Nov; 29(47):10590-3. PubMed ID: 2271670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.