These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 4607618)

  • 1. Ultrastructure of membrane lesions in immune lysis, osmotic lysis and drug-induced lysis.
    Seeman P
    Fed Proc; 1974 Oct; 33(10):2116-24. PubMed ID: 4607618
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanism of complement-induced cell lysis. Demonstration of a three-step mechanism of EAC1-8 cell lysis by C9 and of a non-osmotic swelling of erythrocytes.
    Valet G; Opferkuch W
    J Immunol; 1975 Oct; 115(4):1028-33. PubMed ID: 809505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protective effects of various compounds on lysis of antibody-coated sheep erythrocytes by hypotonic shock or complement.
    Müller-Peddinghaus R; Erdtmann K
    Methods Find Exp Clin Pharmacol; 1984 Jun; 6(6):287-92. PubMed ID: 6748820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the terminal stages of immune hemolysis. VI. Osmotic blockers of differing Stokes' radii detect complement-induced transmembrane channels of differing size.
    Boyle MD; Gee AP; Borsos T
    J Immunol; 1979 Jul; 123(1):77-82. PubMed ID: 109541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell volume and osmotic properties of erythrocytes after complement lysis measured by flow cytometry.
    Bauer J; Valet G
    J Immunol; 1983 Feb; 130(2):839-44. PubMed ID: 6848597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The indiction by complement of a change in KSCN-dissociable red cell membrane lipids.
    Giavedoni EB; Dalmasso AP
    J Immunol; 1976 Apr; 116(4):1163-9. PubMed ID: 1254965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [BPO-Specific, complement-dependant cell-lysis of differently sensitized sheep red cells: evaluation of haptenic groups and their influence on IgM and IgG-induced lysis (author's transl)].
    Wiedermann G; Stemberger H; Förster O; Müller M
    Z Immunitatsforsch Exp Klin Immunol; 1976 Apr; 151(2):173-80. PubMed ID: 134537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow phase hemolysis in hypotonic electrolyte solutions.
    Chan TK; LaCelle PL; Weed RI
    J Cell Physiol; 1975 Feb; 85(1):47-57. PubMed ID: 1110261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune hemolysis and the functional properties of the second (C2) and fourth (C4) components of complement. I. Functional differences among C4 sites on cell surfaces.
    Borsos T; Rapp HJ; Colten HR
    J Immunol; 1970 Dec; 105(6):1439-46. PubMed ID: 4991793
    [No Abstract]   [Full Text] [Related]  

  • 10. Immune hemolysis. II. Studies on the mechanism of enhanced lysis of sheep red cells in a high K + medium.
    Leddy JP; Thiem PA; Leblond PF; Weed RI; Lauf PK
    J Immunol; 1972 Feb; 108(2):475-82. PubMed ID: 5049094
    [No Abstract]   [Full Text] [Related]  

  • 11. Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin.
    Seeman P
    J Cell Biol; 1967 Jan; 32(1):55-70. PubMed ID: 10976201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The interaction of antibody and complement with model membranes (author's transl)].
    Inoue K
    Tanpakushitsu Kakusan Koso; 1974 Sep; 19(10):741-54. PubMed ID: 4612613
    [No Abstract]   [Full Text] [Related]  

  • 13. Complement-induced changes in the core structure of sheep erythrocyte membranes: a study by freeze-etch electron microscopy.
    Bhakdi S; Speth V; Knüfermann H; Wallach DF; Fischer H
    Biochim Biophys Acta; 1974 Aug; 356(3):300-8. PubMed ID: 4210701
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies of complement-mediated membrane damage: the influence of erythrocyte storage on susceptibility to cytolysis.
    Gaither TA; Frank MM
    J Immunol; 1973 Feb; 110(2):482-9. PubMed ID: 4684035
    [No Abstract]   [Full Text] [Related]  

  • 15. Electrokinetic behavior of intermediate cells in immune hemolysis.
    Okada H; Kojima K; Yoshida TO; Nishioka K
    J Immunol; 1972 Jan; 108(1):59-64. PubMed ID: 5010397
    [No Abstract]   [Full Text] [Related]  

  • 16. Lysis of sheep red cells in neat autologous serum as a source of antibody and complement.
    Borsos T; Circolo A
    Acta Pathol Microbiol Immunol Scand Suppl; 1984; 284():5-9. PubMed ID: 6587743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The complement system].
    Wellensiek HJ
    Verh Dtsch Ges Pathol; 1970; 54():37-52. PubMed ID: 4104569
    [No Abstract]   [Full Text] [Related]  

  • 18. THE FINE STRUCTURE OF STROMALYTIC FORMS PRODUCED BY OSMOTIC HEMOLYSIS OF RED BLOOD CELLS.
    BAKER RF
    J Ultrastruct Res; 1964 Dec; 11():494-507. PubMed ID: 14244173
    [No Abstract]   [Full Text] [Related]  

  • 19. Immune adherence reactions of human erythrocytes sensitized with complement in vitro and in vivo.
    Petz L; Fudenberg HH; Fink D
    J Immunol; 1971 Dec; 107(6):1714-22. PubMed ID: 5120402
    [No Abstract]   [Full Text] [Related]  

  • 20. The computer analysis of volume distribution curves. Demonstration of two erythrocyte populations of different size in the young guinea pig and analysis of the mechanism of immune lysis of cells by antibody and complement.
    Valet G; Hofmann H; Ruhenstroth-Bauer G
    J Histochem Cytochem; 1976 Jan; 24(1):231-46. PubMed ID: 1254919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.