These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 4607742)

  • 1. Effect of dissolved oxygen, temperature, initial cell count, and sugar concentration on the viability of Saccharomyces cerevisiae in rapid fermentations.
    Nagodawithana TW; Castellano C; Steinkraus KH
    Appl Microbiol; 1974 Sep; 28(3):383-91. PubMed ID: 4607742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in "rapid fermentation".
    Nagodawithana TW; Steinkraus KH
    Appl Environ Microbiol; 1976 Feb; 31(2):158-62. PubMed ID: 793519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture.
    Morales P; Rojas V; Quirós M; Gonzalez R
    Appl Microbiol Biotechnol; 2015 May; 99(9):3993-4003. PubMed ID: 25582558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization.
    Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of skin maceration and oxygen on anaerobic fermentation of grape musts with high sugar content.
    Valero E; Millán MC; Ortega JM
    Microbios; 2001; 106(414):111-27. PubMed ID: 11506062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of 4-ethylphenol, pH, sucrose and ethanol on the growth and fermentation capacity of the industrial strain of Saccharomyces cerevisiae PE-2.
    Covre EA; Silva LFL; Bastos RG; Ceccato-Antonini SR
    World J Microbiol Biotechnol; 2019 Aug; 35(9):136. PubMed ID: 31432249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of appearance of the Pasteur effect in Saccharomyces cerevisiae: inactivation of sugar transport systems.
    Lagunas R; Dominguez C; Busturia A; Sáez MJ
    J Bacteriol; 1982 Oct; 152(1):19-25. PubMed ID: 6749805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.
    Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D
    Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The various functions of steroids on the yeast metabolism in grape must during fermentation: the notion of survival factor (author's transl)].
    Larue F; Lafon-Lafourcade S; Ribéreau-Gayon P
    Ann Microbiol (Paris); 1979; 130(2):231-43. PubMed ID: 384864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of growth and sugar consumption in yeasts.
    van Dijken JP; Weusthuis RA; Pronk JT
    Antonie Van Leeuwenhoek; 1993; 63(3-4):343-52. PubMed ID: 8279829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of ethanol production from carob pods extract by immobilized Saccharomyces cerevisiae cells.
    Roukas T
    Appl Biochem Biotechnol; 1994 Jan; 44(1):49-64. PubMed ID: 8129378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase.
    Kondo A; Shigechi H; Abe M; Uyama K; Matsumoto T; Takahashi S; Ueda M; Tanaka A; Kishimoto M; Fukuda H
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):291-6. PubMed ID: 11935178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations.
    Seong YJ; Park H; Yang J; Kim SJ; Choi W; Kim KH; Park YC
    Appl Microbiol Biotechnol; 2017 May; 101(9):3567-3575. PubMed ID: 28168313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of temperature, sugar concentration, and inoculum size to maximize ethanol production without significant decrease in yeast cell viability.
    Laluce C; Tognolli JO; de Oliveira KF; Souza CS; Morais MR
    Appl Microbiol Biotechnol; 2009 Jun; 83(4):627-37. PubMed ID: 19234699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures.
    Eliasson A; Christensson C; Wahlbom CF; Hahn-Hägerdal B
    Appl Environ Microbiol; 2000 Aug; 66(8):3381-6. PubMed ID: 10919795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen consumption by anaerobic Saccharomyces cerevisiae under enological conditions: effect on fermentation kinetics.
    Rosenfeld E; Beauvoit B; Blondin B; Salmon JM
    Appl Environ Microbiol; 2003 Jan; 69(1):113-21. PubMed ID: 12513985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of fermentation-relevant factors: A strategy to reduce ethanol in red wine by sequential culture of native yeasts.
    Maturano YP; Mestre MV; Kuchen B; Toro ME; Mercado LA; Vazquez F; Combina M
    Int J Food Microbiol; 2019 Jan; 289():40-48. PubMed ID: 30196180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms.
    Zhang J; Lynd LR
    Biotechnol Bioeng; 2010 Oct; 107(2):235-44. PubMed ID: 20506488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae.
    Imura M; Iwakiri R; Bamba T; Fukusaki E
    J Biosci Bioeng; 2018 Aug; 126(2):183-188. PubMed ID: 29685822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations.
    Ciani M; Beco L; Comitini F
    Int J Food Microbiol; 2006 Apr; 108(2):239-45. PubMed ID: 16487611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.