These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 4609588)

  • 21. Effects of iprindole on responses of single cortical and caudate neurones to monoamines and acetylcholine.
    Bevan P; Bradshaw CM; Szabadi E
    Br J Pharmacol; 1975 Sep; 55(1):17-25. PubMed ID: 1182344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The electrophysiology of dopamine (D2) receptors: a study of the actions of dopamine on corticostriatal transmission.
    Brown JR; Arbuthnott GW
    Neuroscience; 1983 Oct; 10(2):349-55. PubMed ID: 6138732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Suppressing action of cholinergic agents on synaptic transmissions in the corpus striatum of rats.
    Takagi M; Yamamoto C
    Exp Neurol; 1978 Nov; 62(2):433-43. PubMed ID: 215441
    [No Abstract]   [Full Text] [Related]  

  • 24. Selectivity of release of norepinephrine, dopamine and 5-hydroxytryptamine by amphetamine in various regions of rat brain.
    Azzaro AJ; Rutledge CO
    Biochem Pharmacol; 1973 Nov; 22(22):2801-13. PubMed ID: 4761552
    [No Abstract]   [Full Text] [Related]  

  • 25. Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis.
    Bloom FE; Costa E; Salmoiraghi GC
    J Pharmacol Exp Ther; 1965 Nov; 150(2):244-52. PubMed ID: 5855881
    [No Abstract]   [Full Text] [Related]  

  • 26. Effect of iontophoretic application of acetylcholine and noradrenaline to antidromically identified paraventricular neurones.
    Cross BA; Moss RL; Urban I
    J Physiol; 1971; 214 Suppl():28P-30P. PubMed ID: 5575363
    [No Abstract]   [Full Text] [Related]  

  • 27. A quantitative analysis of the excitation of single cortical neurones by acetylcholine and L-glutamic acid applied micro-iontophoretically.
    Clarke G; Forrester PA; Straughan DW
    Neuropharmacology; 1974 Nov; 13(10-11):1047-55. PubMed ID: 4437723
    [No Abstract]   [Full Text] [Related]  

  • 28. Unilateral dopamine depletions attenuate the response of striatal neurons to systemic amphetamine in both hemispheres.
    Basse-Tomusk AE; Rebec GV
    Neuroscience; 1985 Dec; 16(4):845-50. PubMed ID: 4094695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulatory action of dopamine on acetylcholine-responsive striatal and accumbal neurons in awake, unrestrained rats.
    Kiyatkin EA; Rebec GV
    Brain Res; 1996 Mar; 713(1-2):70-8. PubMed ID: 8724977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of iontophoretically applied neurotransmitters on mouse brain neurones in culture.
    Bonkowski L; Dryden WF
    Neuropharmacology; 1977 Feb; 16(2):89-97. PubMed ID: 14312
    [No Abstract]   [Full Text] [Related]  

  • 31. Responses of striatal neurons in the behaving monkey. 3. Effects of iontophoretically applied dopamine on normal responsiveness.
    Rolls ET; Thorpe SJ; Boytim M; Szabo I; Perrett DI
    Neuroscience; 1984 Aug; 12(4):1201-12. PubMed ID: 6148716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonstriatal dopaminergic neurons: Section X. Morphine, amphetamine, and noncataleptogenic neuroleptics: Introduction: morphine, amphetamine, and noncataleptogenic neuroleptics.
    Costa E
    Adv Biochem Psychopharmacol; 1977; 16():557-63. PubMed ID: 18900
    [No Abstract]   [Full Text] [Related]  

  • 33. The responses of thalamic neurons to iontophoretically applied monoamines.
    Phillis JW; Tebĕcis AK
    J Physiol; 1967 Oct; 192(3):715-45. PubMed ID: 4293789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microelectrophoresis of cholinergic and aminergic drugs on paraventricular neurons.
    Moss RL; Urban I; Cross BA
    Am J Physiol; 1972 Aug; 223(2):310-8. PubMed ID: 4558378
    [No Abstract]   [Full Text] [Related]  

  • 35. Similarity between effects of general anesthetics and dinitrophenol on cortical neurones.
    Catchlove RF; Krnjević K; Maretić H
    Can J Physiol Pharmacol; 1972 Nov; 50(11):1111-4. PubMed ID: 4640804
    [No Abstract]   [Full Text] [Related]  

  • 36. Long-term decreases in striatal dopamine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid after a single injection of amphetamine in iprindole-treated rats: time course and time-dependent interactions with amfonelic acid.
    Steranka LR
    Brain Res; 1982 Feb; 234(1):123-36. PubMed ID: 7059818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of volatile anesthetics, thiopental, and ketamine on spontaneous and depolarization-evoked dopamine release from striatal synaptosomes in the rat.
    Mantz J; Varlet C; Lecharny JB; Henzel D; Lenot P; Desmonts JM
    Anesthesiology; 1994 Feb; 80(2):352-63. PubMed ID: 8311317
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective (+)-amphetamine neurotoxicity on striatal dopamine nerve terminals in the mouse.
    Jonsson G; Nwanze E
    Br J Pharmacol; 1982 Oct; 77(2):335-45. PubMed ID: 7139192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Role of cyclic AMP in the action of dopamine on the spontaneous and glutamate-induced activity of neostriatal neurons in the rat].
    Godukhin OV; Kuz'minykh SB; Budantsev AIu
    Neirofiziologiia; 1985; 17(5):614-9. PubMed ID: 2866453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repeated stimulation of D1 dopamine receptors causes time-dependent alterations in the sensitivity of both D1 and D2 dopamine receptors within the rat striatum.
    Hu XT; Brooderson RJ; White FJ
    Neuroscience; 1992 Sep; 50(1):137-47. PubMed ID: 1357592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.