These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 4610585)

  • 41. The effect of exogenous fatty acids on fatty acid metabolism in Escherichia coli K-12.
    Silbert DF; Cohen M; Harder ME
    J Biol Chem; 1972 Mar; 247(6):1699-707. PubMed ID: 4552014
    [No Abstract]   [Full Text] [Related]  

  • 42. Effect of changes in fatty acid composition of phospholipid species on the -galactoside transport system of Escherichia coli K-12.
    Kito M; Aibara S; Kato M; Ishinaga M; Hata T
    Biochim Biophys Acta; 1973 Feb; 298(1):69-74. PubMed ID: 4575056
    [No Abstract]   [Full Text] [Related]  

  • 43. Acyl phosphatidylglycerol of Escherichia coli.
    Kobayashi T; Nishijima M; Tamori Y; Nojima S; Seyama Y; Yamakawa T
    Biochim Biophys Acta; 1980 Dec; 620(3):356-63. PubMed ID: 7016184
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12.
    Lugtenberg EJ; Peters R
    Biochim Biophys Acta; 1976 Jul; 441(1):38-47. PubMed ID: 782533
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Growth rate-dependent changes in Escherichia coli membrane structure and protein leakage.
    Shokri A; Sandén AM; Larsson G
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):386-92. PubMed ID: 11935192
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional analysis of the dehydratase domains of a PUFA synthase from Thraustochytrium in Escherichia coli.
    Xie X; Meesapyodsuk D; Qiu X
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):847-856. PubMed ID: 29177940
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Function of phospholipids in Escherichia coli. Influence of changes in polar head group composition on the lipid phase transition and characterization of a mutant containing only saturated phospholipid acyl chains.
    Pluschke G; Overath P
    J Biol Chem; 1981 Apr; 256(7):3207-12. PubMed ID: 7009610
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Incorporation of synthetic fatty acid analogs into phospholipids of Escherichia coli.
    Olsen WL; Schaechter M; Khorana HG
    J Bacteriol; 1979 Mar; 137(3):1443-6. PubMed ID: 374354
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Changes in the chemical and the barrier properties of the membrane lipids of E. coli by variation of the temperature of growth.
    Haest CW; de Gier J; van Deenen LL
    Chem Phys Lipids; 1969 Dec; 3(4):413-7. PubMed ID: 4905515
    [No Abstract]   [Full Text] [Related]  

  • 50. Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli.
    Sinensky M
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):522-5. PubMed ID: 4360948
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Incorporation of photosensitive fatty acids into phospholipids of Escherichia coli and irradiation-dependent cross-linking of phospholipids to membrane proteins.
    Quay SC; Radhakrishnan R; Khorana HG
    J Biol Chem; 1981 May; 256(9):4444-9. PubMed ID: 7012153
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alteration of the fatty acid composition of Escherichia coli by growth in the presence of normal alcohols.
    Sullivan KH; Hegeman GD; Cordes EH
    J Bacteriol; 1979 Apr; 138(1):133-8. PubMed ID: 374359
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Escherichia coli membrane fluidity as detected by excimerization of dipyrenylpropane: sensitivity to the bacterial fatty acid profile.
    Mejía R; Gómez-Eichelmann MC; Fernández MS
    Arch Biochem Biophys; 1999 Aug; 368(1):156-60. PubMed ID: 10415123
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The fats of Escherichia coli during infancy and old age: regulation by global regulators, alarmones and lipid intermediates.
    DiRusso CC; Nyström T
    Mol Microbiol; 1998 Jan; 27(1):1-8. PubMed ID: 9466250
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Release of outer membrane fragments from normally growing Escherichia coli.
    Hoekstra D; van der Laan JW; de Leij L; Witholt B
    Biochim Biophys Acta; 1976 Dec; 455(3):889-99. PubMed ID: 793634
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evidence for a direct effect on fatty acid synthesis in rela gene control of membrane phospholipid synthesis.
    Nunn WD; Cronan JE
    J Mol Biol; 1976 Mar; 102(1):167-72. PubMed ID: 775099
    [No Abstract]   [Full Text] [Related]  

  • 57. Fatty acid mutant of E. coli lacking a beta-hydroxydecanoyl thioester dehydrase.
    Silbert DF; Vagelos PR
    Proc Natl Acad Sci U S A; 1967 Oct; 58(4):1579-86. PubMed ID: 4867667
    [No Abstract]   [Full Text] [Related]  

  • 58. Genetic modification of membrane lipid.
    Silbert DF
    Annu Rev Biochem; 1975; 44():315-39. PubMed ID: 1094912
    [No Abstract]   [Full Text] [Related]  

  • 59. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli.
    Rehm BH; Mitsky TA; Steinbüchel A
    Appl Environ Microbiol; 2001 Jul; 67(7):3102-9. PubMed ID: 11425728
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sterol and phospholipid acyl chain alterations in Saccharomyces cerevisiae secretion mutants as a function of temperature stress.
    Low C; Parks LW
    Lipids; 1987 Oct; 22(10):715-20. PubMed ID: 3323755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.