These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 4611487)

  • 21. Aminoacyl transfer ribonucleic acid synthesis in toluene-treated liver cells.
    Hilderman RH; Deutscher MP
    J Biol Chem; 1974 Aug; 249(16):5346-8. PubMed ID: 4211789
    [No Abstract]   [Full Text] [Related]  

  • 22. The enzymatic synthesis of N-(purin-6-ylcarbamoyl)threonine, an anticodon-adjacent base in transfer ribonucleic acid.
    Elkins BN; Keller EB
    Biochemistry; 1974 Oct; 13(22):4622-8. PubMed ID: 4609459
    [No Abstract]   [Full Text] [Related]  

  • 23. Inactivation of T u factor-guanosine triphosphate recognition and ribosome-binding ability by terminal oxidation-reduction of yeast phenylalanine transfer ribonucleic acid.
    Ofengand J; Chen CM
    J Biol Chem; 1972 Apr; 247(7):2049-58. PubMed ID: 4335860
    [No Abstract]   [Full Text] [Related]  

  • 24. Inhibition and activation of yeast phenylalanine and E. coli tRNA methylation.
    Hancock RL
    Physiol Chem Phys; 1972; 4(2):173-92. PubMed ID: 4582673
    [No Abstract]   [Full Text] [Related]  

  • 25. Aminoacylation of Escherichia coli cysteine tRNA by selenocysteine.
    Young PA; Kaiser II
    Arch Biochem Biophys; 1975 Dec; 171(2):483-9. PubMed ID: 963
    [No Abstract]   [Full Text] [Related]  

  • 26. The variety of intraspecific misacylations carried out by isoleucyl transfer ribonucleic acid synthetase of Escherichia coli.
    Yarus M; Mertes M
    J Biol Chem; 1973 Oct; 248(19):6744-9. PubMed ID: 4355506
    [No Abstract]   [Full Text] [Related]  

  • 27. Studies on the mechanism of deacylation of aminoacyl-tRNAs by aminoacyl-tRNA synthetases in the absence of adenosine monophosphate and pyrophosphate.
    Bonnet J
    Biochimie; 1974; 56(4):541-5. PubMed ID: 4371101
    [No Abstract]   [Full Text] [Related]  

  • 28. Solvent and specificity. Binding and isoleucylation of phenylalanine transfer ribonucleic acid (Escherichia coli) by isoleucyl transfer ribonucleic acid synthetase from Escherichia coli.
    Yarus M
    Biochemistry; 1972 Jun; 11(12):2352-61. PubMed ID: 4337616
    [No Abstract]   [Full Text] [Related]  

  • 29. Equilibrium measurements of cognate and noncognate interactions between aminoacyl transfer RNA synthetases and transfer RNA.
    Lam SS; Schimmel PR
    Biochemistry; 1975 Jun; 14(12):2775-80. PubMed ID: 238575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties of tRNAPhe from Drosophila.
    White BN; Tener GM
    Biochim Biophys Acta; 1973 Jun; 312(2):267-75. PubMed ID: 4198761
    [No Abstract]   [Full Text] [Related]  

  • 31. Valyl- and phenylalanyl-tRNA synthetase from baker's yeast: recognition of transfer RNA results from a multistep process, as indicated by inhibition of aminoacylation with modified transfer RNA.
    von der Harr F; Cramer F
    Biochemistry; 1978 Oct; 17(21):4509-14. PubMed ID: 363144
    [No Abstract]   [Full Text] [Related]  

  • 32. Site of aminoacylation of tRNAs from Escherichia coli with respect to the 2'- or 3'-hydroxyl group of the terminal adenosine.
    Sprinzl M; Cramer F
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):3049-53. PubMed ID: 1103137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incorrect aminoacylatins catalysed by the phenylalanyl-and valyl-tRNA synthetases from yeast.
    Kern D; Giegé R; Ebel JP
    Eur J Biochem; 1972 Nov; 31(1):148-55. PubMed ID: 4565518
    [No Abstract]   [Full Text] [Related]  

  • 34. Acylation of Escherichia coli tRNAtrp with 5-methyltryptophan by E. coli tryptophanyl-tRNA ligase.
    Thang MN; Buckingham RH; Dondon L
    Biochim Biophys Acta; 1973 Jul; 312(4):685-94. PubMed ID: 4354876
    [No Abstract]   [Full Text] [Related]  

  • 35. Inhibitory effect of complex formation with oligodeoxyribonucleotide ethyl phosphotriesters on transfer ribonucleic acid aminoacylation.
    Barrett JC; Miller PS; Ts'o PO
    Biochemistry; 1974 Nov; 13(24):4897-906. PubMed ID: 4373041
    [No Abstract]   [Full Text] [Related]  

  • 36. Structural change of the Phe-tRNA Phe-(CCCA) and the effect on the rate of peptide formation.
    Thang MN; Dondon L; Rether B
    FEBS Lett; 1974 Mar; 40(1):67-71. PubMed ID: 4605148
    [No Abstract]   [Full Text] [Related]  

  • 37. On the specificity of interactions between transfer ribonucleic acids and aminoacyl-tRNA synthetases.
    Pachmann U; Cronvall E; Rigler R; Hirsch R; Wintermeyer W; Zachau HG
    Eur J Biochem; 1973 Nov; 39(1):265-73. PubMed ID: 4589027
    [No Abstract]   [Full Text] [Related]  

  • 38. Protein synthesis in a cell-free system prepared from human placenta. II. pH 5 enzyme inefficiency due to defects in tRNA charging with resulting loss of elongation factor 1.
    Hubert C; Baliga BS; Villee CA; Munro HN
    Biochim Biophys Acta; 1974 Dec; 374(3):359-74. PubMed ID: 4611498
    [No Abstract]   [Full Text] [Related]  

  • 39. Kethoxal inactivation of three transfer ribonucleic acids chargeable by yeast phenylalanyl transfer ribonucleic acid synthetase.
    Litt M; Greenspan CM
    Biochemistry; 1972 Apr; 11(8):1437-42. PubMed ID: 4553754
    [No Abstract]   [Full Text] [Related]  

  • 40. Acceptor activity of hypermethylated E. coli tRNAf-Met.
    Shershneva LP; Venkstern TV; Bayev AA
    Nucleic Acids Res; 1974 Feb; 1(2):235-43. PubMed ID: 4606167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.