These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 4611517)

  • 1. Dielectric breakdown of cell membranes.
    Zimmermann U; Pilwat G; Riemann F
    Biophys J; 1974 Nov; 14(11):881-99. PubMed ID: 4611517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of erythrocyte ghosts by dielectric breakdown of the cell membrane.
    Zimmermann U; Pilwat G; Riemann F
    Biochim Biophys Acta; 1975 Jan; 375(2):209-19. PubMed ID: 1168495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown.
    Riemann F; Zimmermann U; Pilwat G
    Biochim Biophys Acta; 1975 Jul; 394(3):449-62. PubMed ID: 1131371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcellular ion flow in Escherichia coli B and electrical sizing of bacterias.
    Zimmermann U; Schulz J; Pilwat G
    Biophys J; 1973 Oct; 13(10):1005-13. PubMed ID: 4583964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric breakdown measurements of human and bovine erythrocyte membranes using benzyl alcohol as a probe molecule.
    Pilwat G; Zimmermann U; Riemann F
    Biochim Biophys Acta; 1975 Oct; 406(3):424-32. PubMed ID: 1182171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical hemolysis of human and bovine red blood cells.
    Zimmermann U; Pilwat G; Holzapfel C; Rosenheck K
    J Membr Biol; 1976 Dec; 30(2):135-52. PubMed ID: 13222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme loading of electrically homogeneous human red blood cell ghosts prepared by dielelctric breakdown.
    Zimmermann U; Riemann F; Pilwat G
    Biochim Biophys Acta; 1976 Jun; 436(2):460-74. PubMed ID: 1276224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of intracellular conductivity from electrical breakdown measurements.
    Pilwat G; Zimmermann U
    Biochim Biophys Acta; 1985 Nov; 820(2):305-14. PubMed ID: 4052426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythrocyte and ghost cytoplasmic resistivity and voltage-dependent apparent size.
    Akeson SP; Mel HC
    Biophys J; 1983 Dec; 44(3):397-403. PubMed ID: 6661495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study.
    Benz R; Beckers F; Zimmermann U
    J Membr Biol; 1979 Jul; 48(2):181-204. PubMed ID: 480336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures.
    Krueger M; Thom F
    Biophys J; 1997 Nov; 73(5):2653-66. PubMed ID: 9370459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility.
    Needham D; Hochmuth RM
    Biophys J; 1989 May; 55(5):1001-9. PubMed ID: 2720075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical field effects induced in membranes of developing chloroplasts.
    Pilwat G; Hampp R; Zimmermann U
    Planta; 1980 Feb; 147(5):396-404. PubMed ID: 24311160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of mechanisms of electric field-induced DNA transfection. II. Transfection by low-amplitude, low-frequency alternating electric fields.
    Xie TD; Tsong TY
    Biophys J; 1990 Oct; 58(4):897-903. PubMed ID: 2248994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A polarization model overcoming the geometric restrictions of the laplace solution for spheroidal cells: obtaining new equations for field-induced forces and transmembrane potential.
    Gimsa J; Wachner D
    Biophys J; 1999 Sep; 77(3):1316-26. PubMed ID: 10465744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of pressure on the electrical breakdown in the membranes of Valonia utricularis.
    Zimmermann U; Beckers F; Coster HG
    Biochim Biophys Acta; 1977 Jan; 464(2):399-46. PubMed ID: 831801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical breakdown of human erythrocytes: a technique for the study of electro-haemolysis.
    Oliver LD; Coster HG
    Bioelectrochemistry; 2003 Oct; 61(1-2):9-19. PubMed ID: 14642905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Penetration and entrapment of large particles in erythrocytes by electrical breakdown techniques.
    Vienken J; Jeltsch E; Zimmermann U
    Cytobiologie; 1978 Jun; 17(1):182-96. PubMed ID: 689250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectric properties and ion mobility in erythrocytes.
    Pauly H; Schwan HP
    Biophys J; 1966 Sep; 6(5):621-39. PubMed ID: 5970566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The breakdown of cell membranes by electrical and mechanical stress.
    Akinlaja J; Sachs F
    Biophys J; 1998 Jul; 75(1):247-54. PubMed ID: 9649384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.