BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 4612016)

  • 1. Ribonucleic acid regulation in amino acid-limited cultures of Escherichia coli grown in a chemostat.
    Atherly AG
    J Bacteriol; 1974 Dec; 120(3):1322-30. PubMed ID: 4612016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of mutants of Escherichia coli temperature-sensitive for ribonucleic acid regulation: an unusual phenotype associated with a phenylalanyl transfer ribonucleic acid synthetase mutant.
    Atherly AG; Suchanek MC
    J Bacteriol; 1971 Nov; 108(2):627-38. PubMed ID: 4942755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polysome stability in relaxed and stringent strain of Escherichia coli during amino acid starvation.
    Sells BH; Ennis HL
    J Bacteriol; 1970 Jun; 102(3):666-71. PubMed ID: 4914072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyamines and the accumulation of ribonucleic acid in some polyauxotrophic strains of Escherichia coli.
    Raina A; Jansen M; Cohen SS
    J Bacteriol; 1967 Nov; 94(5):1684-96. PubMed ID: 4863983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quinone induced stringent control. Accumulation of ppGpp and inhibition of RNA synthesis in stringent Escherichia coli by 5,8-dioxo-6-amino-7-chloroquinoline.
    Ogilvie A; Lämmerman M; Wiebauer K; Kersten W
    Biochim Biophys Acta; 1975 Jun; 395(2):136-45. PubMed ID: 1095072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of amino acid starvation on guanosine 5'-diphosphate 3'-diphosphate basal-level synthesis in Escherichia coli.
    Lagosky PA; Chang FN
    J Bacteriol; 1980 Nov; 144(2):499-508. PubMed ID: 6159345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, no synthesis, or synthesis and degradation of ribosomal ribonucleic acid in various Escherichia coli strains starved for an amino acid.
    Craig E; Schlessinger D; Gurgo C
    J Bacteriol; 1972 Jul; 111(1):66-72. PubMed ID: 4591484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribonucleic acid regulation in premeabilized cells of Escherichia coli capable of ribonucleic acid and protein synthesis.
    Atherly AG
    J Bacteriol; 1974 Jun; 118(3):1186-9. PubMed ID: 4364330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precursor relationship of phenylalanine transfer ribonucleic acid from Escherichia coli treated with chloramphenicol or starved for iron, methionine, or cysteine.
    Juarez H; Skjold AC; Hedgcoth C
    J Bacteriol; 1975 Jan; 121(1):44-54. PubMed ID: 46864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acids in relaxed and stringent amino acid auxotrophs of Escherichia coli.
    Gray WJ; Midgley JE
    Biochem J; 1972 Aug; 128(5):1007-20. PubMed ID: 4566191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of intracellular protein breakdown in stringent and relaxed strains of E. coli,
    Rafaeli-Eshkol D; Hershko A
    Cell; 1974 May; 2(1):31-5. PubMed ID: 4607002
    [No Abstract]   [Full Text] [Related]  

  • 12. Decay of ribonucleic acid synthesis in amino acid-starved Escherichia coli after rifampin treatment.
    Rogerson AC; Ezekiel DH
    J Bacteriol; 1974 Mar; 117(3):987-93. PubMed ID: 4591964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Messenger ribonucleic acid stability in relaxed and stringent Escherichia coli starved for methionine.
    Silengo L
    J Bacteriol; 1973 Jul; 115(1):447-9. PubMed ID: 4577748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-sensitive relaxed Phenotype in a stringent strain of Escherichia coli.
    Atherly AG
    J Bacteriol; 1973 Jan; 113(1):178-82. PubMed ID: 4569401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribonucleic acid synthesis and glutamate excretion in Escherichia coli.
    Broda P
    J Bacteriol; 1968 Nov; 96(5):1528-34. PubMed ID: 4973126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-sensitive mutation in regulation of ribonucleic acid synthesis in Escherichia coli.
    Kuwano M; Endo H; Yamamoto M
    J Bacteriol; 1972 Dec; 112(3):1150-6. PubMed ID: 4565532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polypeptide formation and polyribosomes in Escherichia coli treated with chloramphenicol.
    Cremer K; Silengo L; Schlessinger D
    J Bacteriol; 1974 May; 118(2):582-9. PubMed ID: 4597450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acid in chloramphenicol-inhibited cultures of Escherichia coli.
    Midgley JE; Gray WJ
    Biochem J; 1971 Apr; 122(2):149-59. PubMed ID: 4940606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducible and constitutive -galactosidase formation in cells recovering from protein synthesis inhibition.
    Soreq H; Kaplan R
    J Bacteriol; 1971 Dec; 108(3):1147-53. PubMed ID: 4945186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between RNA synthesis and basal level guanosine 5'-diphosphate 3'-diphosphate in relaxed mutants of Escherichia coli.
    Lagosky PA; Chang FN
    J Biol Chem; 1981 Nov; 256(22):11651-6. PubMed ID: 6170636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.