BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 461208)

  • 1. Cations and the accessibility of chromatin to nucleases.
    Billett MA; Hall TJ
    Nucleic Acids Res; 1979 Jun; 6(8):2929-45. PubMed ID: 461208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of eukaryotic chromatin. Evaluation of periodicity using endogenous and exogenous nucleases.
    Keichline LD; Villee CA; Wassarman PM
    Biochim Biophys Acta; 1976 Feb; 425(1):84-94. PubMed ID: 1247619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin structure. Nuclease digestion profiles reflect intermediate stages in the folding of the 30-nm fiber rather than the existence of subunit beads.
    Walker PR; Sikorska M; Whitfield JF
    J Biol Chem; 1986 May; 261(15):7044-51. PubMed ID: 3700426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Inhibition of chromatin autolysis in the process of isolating and incubating rat liver cell nuclei].
    Khodarev NN; Votrin II; Debov SS
    Vopr Med Khim; 1981; 27(4):538-44. PubMed ID: 6270909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyamine depletion is associated with altered chromatin structure in HeLa cells.
    Snyder RD
    Biochem J; 1989 Jun; 260(3):697-704. PubMed ID: 2504149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of polyamine depletion on chromatin structure in U-87 MG human brain tumour cells.
    Basu HS; Sturkenboom MC; Delcros JG; Csokan PP; Szollosi J; Feuerstein BG; Marton LJ
    Biochem J; 1992 Mar; 282 ( Pt 3)(Pt 3):723-7. PubMed ID: 1554353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digestion by micrococcal nuclease of mouse submandibular-salivary-gland chromatin.
    Smith GJ; Rowlatt C
    Biochem J; 1980 May; 187(2):353-60. PubMed ID: 7396853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyamines in liver and their influence on chromatin condensation after 17-beta estradiol treatment of Atlantic salmon.
    Waters S; Khamis M; von der Decken A
    Mol Cell Biochem; 1992 Jan; 109(1):17-24. PubMed ID: 1614418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intranuclear distribution of rat uterine estrogen receptors determined after nuclease treatment and chromatin fractionation.
    Pavlik EJ; Katzenellenbogen BS
    Mol Cell Endocrinol; 1982 Apr; 26(1-2):201-16. PubMed ID: 7084560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractionation of chromatin, released by nuclease digestion, on ECTHAM-cellulose. Separation of active and inactive chromatin.
    Smith AJ; Billett MA
    Biochim Biophys Acta; 1982 May; 697(2):134-47. PubMed ID: 7104353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cations on the acetylation of chromatin in vitro.
    Dod B; Kervabon A; Parello J
    Eur J Biochem; 1982 Jan; 121(2):401-5. PubMed ID: 7060556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superstructural differences between chromatin in nuclei and in solution are revealed by kinetics of micrococcal nuclease digestion.
    Levinger LF; Carter CW
    J Biol Chem; 1979 Oct; 254(19):9477-87. PubMed ID: 489546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of transcriptionally-active chromatin subunits.
    Gottesfeld JM; Butler PJ
    Nucleic Acids Res; 1977 Sep; 4(9):3155-73. PubMed ID: 909802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endogenous polyamines are intimately associated with highly condensed chromatin in vivo. A fluorescence cytochemical and immunocytochemical study of spermine and spermidine during the cell cycle and in reactivated nuclei.
    Hougaard DM; Bolund L; Fujiwara K; Larsson LI
    Eur J Cell Biol; 1987 Aug; 44(1):151-5. PubMed ID: 3305026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the sensitivity of chromatin to exogenous nucleases: implications for the apparent increased sensitivity of transcriptionally active genes.
    Walker PR; Sikorska M
    Biochemistry; 1986 Jul; 25(13):3839-45. PubMed ID: 3091066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclease digestibility of chromatin is affected by nuclei isolation procedures.
    Prentice DA; Gurley LR
    Biochim Biophys Acta; 1983 Jun; 740(2):134-44. PubMed ID: 6222768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digestion of insect chromatin with micrococcal nuclease, DNase I and DNase I combined with single-strand specific nuclease S1.
    Schmidt ER
    Nucleic Acids Res; 1977 Jul; 4(7):2169-80. PubMed ID: 909768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective association of the trout-specific H6 protein with chromatin regions susceptible to DNase I and DNase II: possible location of HMG-T in the spacer region between core nucleosomes.
    Levy W B; Wong NC; Dixon GH
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2810-4. PubMed ID: 268631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyroid hormone receptor-containing fragment released from chromatin by deoxyribonuclease I and micrococcal nuclease.
    Jump DB; Oppenheimer JH
    Science; 1980 Aug; 209(4458):811-3. PubMed ID: 6250215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural studies on chromatin digestion by micrococcal nuclease in the presence of polyamines.
    Rowlatt C; Smith GJ
    J Cell Sci; 1981 Apr; 48():171-9. PubMed ID: 7276086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.