BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 4612360)

  • 1. Influences of cellular susceptibility to amphotericin B and of post-irradiation growth conditions on inactivation of Candida albicans by ultraviolet radiation.
    Sarachek A; Pettriess RW
    Mycopathol Mycol Appl; 1974 Nov; 54(2):205-14. PubMed ID: 4612360
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of ergosterol, palmitic acid and related simple lipids on the recovery of Candida albicans from ultraviolet irradiation.
    Sarachek A; Higgins NP
    Arch Mikrobiol; 1972; 82(1):38-54. PubMed ID: 4554417
    [No Abstract]   [Full Text] [Related]  

  • 3. Ergosterol-enhanced recovery of mutagen treated Candida albicans.
    Sarachek A
    Z Allg Mikrobiol; 1977; 17(6):481-5. PubMed ID: 337692
    [No Abstract]   [Full Text] [Related]  

  • 4. Cellular inactivation and mitotic recombination induced by ultraviolet radiation in aneuploid and euploid strains of Candida albicans.
    Rhoads DD; Sarachek A
    Mycopathologia; 1984 Aug; 87(1-2):35-41. PubMed ID: 6387497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal complexes of 1,10-phenanthroline-5,6-dione alter the susceptibility of the yeast Candida albicans to amphotericin B and miconazole.
    Eshwika A; Coyle B; Devereux M; McCann M; Kavanagh K
    Biometals; 2004 Aug; 17(4):415-22. PubMed ID: 15259362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nalidixic acid inhibition of post-ultraviolet recovery by nalidixic acid sensitive and resistant strains of Candida albicans.
    Sarachek A; Lee SC
    Z Allg Mikrobiol; 1980; 20(2):141-7. PubMed ID: 6990642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of mitochondrial function in Candida albicans leads to reduced cellular ergosterol levels and elevated growth in the presence of amphotericin B.
    Geraghty P; Kavanagh K
    Arch Microbiol; 2003 Apr; 179(4):295-300. PubMed ID: 12640519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting the changes in amphotericin sensitivity of Candida albicans during growth.
    Gale EF; Johnson AM; Kerridge D; Koh TY
    J Gen Microbiol; 1975 Mar; 87(1):20-36. PubMed ID: 1094096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Properties of a Candida albicans strain possessing an increased sensitivity to polyene antibiotics].
    Feĭgin AM; Belousova II; Tereshin IM
    Antibiotiki; 1978 May; 23(5):411-3. PubMed ID: 350141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speciation and amphotericin B sensitivity studies on blood isolates of Candida from burned patients.
    Stieritz DD; Law EJ; Holder IA
    J Clin Pathol; 1973 Jun; 26(6):405-8. PubMed ID: 4578160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic resistance to amphotericin B in Candida albicans: the role of reduction.
    Gale EF; Johnson AM; Kerridge D; Miles EA
    J Gen Microbiol; 1978 Dec; 109(2):191-204. PubMed ID: 370341
    [No Abstract]   [Full Text] [Related]  

  • 12. Exposure of the yeast Candida albicans to the anti-neoplastic agent adriamycin increases the tolerance to amphotericin B.
    O'Keeffe J; Doyle S; Kavanagh K
    J Pharm Pharmacol; 2003 Dec; 55(12):1629-33. PubMed ID: 14738588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two types of resistance to polyene antibiotics in Candida albicans.
    HsuChen CC; Feingold DS
    Nature; 1974 Oct; 251(5476):656-9. PubMed ID: 4609276
    [No Abstract]   [Full Text] [Related]  

  • 14. Factors influencing the susceptibility of Candida albicans to the polyenoic antibiotics nystatin and amphotericin B.
    Johnson B; White RJ; Williamson GM
    J Gen Microbiol; 1978 Feb; 104(2):325-33. PubMed ID: 24676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysozyme-enhanced killing of Candida albicans and Coccidioides immitis by amphoteracin B.
    Collins MS; Pappagianis D
    Sabouraudia; 1974 Nov; 12(3):329-40. PubMed ID: 4610825
    [No Abstract]   [Full Text] [Related]  

  • 16. Inactivation of amphotericin B by reducing agents: influences on growth inhibition of Candida albicans and lysis of erythrocytes.
    Weis MR; Levine HB
    Sabouraudia; 1972 Jul; 10(2):132-42. PubMed ID: 4557876
    [No Abstract]   [Full Text] [Related]  

  • 17. Nature and development of phenotypic resistance to amphotericin B in Candida albicans.
    Gale EF
    Adv Microb Physiol; 1986; 27():277-320. PubMed ID: 3532717
    [No Abstract]   [Full Text] [Related]  

  • 18. The effect of antifungal agents on the in vitro susceptibility of Candida albicans to apo-lactoferrin.
    Nikawa H; Samaranayake LP; Tenovuo J; Hamada T
    Arch Oral Biol; 1994 Oct; 39(10):921-3. PubMed ID: 7741664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of a subinhibitory dose of amphotericin B on cellular fatty acid and sterol composition of Candida albicans].
    Mpona-Minga M; Hakkou A; Coulon J; Bonaly R
    Ann Inst Pasteur Microbiol; 1988; 139(5):547-55. PubMed ID: 3075500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythromycin, an inhibitor of mitoribosomal protein biosynthesis, alters the amphotericin B susceptibility of Candida albicans.
    Geraghty P; Kavanagh K
    J Pharm Pharmacol; 2003 Feb; 55(2):179-84. PubMed ID: 12631409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.