These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 4612521)
1. Cooperative interactions in aspartate transcarbamoylase. 1. Hybrids composed of native and chemically inactivated catalytic polypeptide chains. Gibbons I; Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4452-6. PubMed ID: 4612521 [TBL] [Abstract][Full Text] [Related]
2. Cooperative interactions in hybrids of aspartate transcarbamylase containing succinylated regulatory polypeptide chains. Nagel GM; Schachman HK Biochemistry; 1975 Jul; 14(14):3195-203. PubMed ID: 1096938 [TBL] [Abstract][Full Text] [Related]
3. A 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase forms a stable complex with the catalytic subunit leading to markedly altered enzyme activity. Markby DW; Zhou BB; Schachman HK Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10568-72. PubMed ID: 1961722 [TBL] [Abstract][Full Text] [Related]
4. Communication between catalytic subunits in hybrid aspartate transcarbamoylase molecules: effect of ligand binding to active chains on the conformation of unliganded, inactive chains. Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5187-91. PubMed ID: 6933552 [TBL] [Abstract][Full Text] [Related]
5. Concerted allosteric transition in hybrids of aspartate transcarbamoylase containing different arrangements of active and inactive sites. Gibbons I; Ritchey JM; Schachman HK Biochemistry; 1976 Mar; 15(6):1324-30. PubMed ID: 766835 [TBL] [Abstract][Full Text] [Related]
6. Aspartate transcarbamoylase molecules lacking one regulatory subunit. Yang YR; Syvanen JM; Nagel GM; Schachman HK Proc Natl Acad Sci U S A; 1974 Mar; 71(3):918-22. PubMed ID: 4595576 [TBL] [Abstract][Full Text] [Related]
7. Communication between dissimilar subunits in aspartate transcarbamoylase: effect of inhibitor and activator on the conformation of the catalytic polypeptide chains. Hensley P; Schachman HK Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3732-6. PubMed ID: 386346 [TBL] [Abstract][Full Text] [Related]
8. Negative complementation in aspartate transcarbamylase. Analysis of hybrid enzyme molecules containing different arrangements of polypeptide chains from wild-type and inactive mutant catalytic subunits. Eisenstein E; Han MS; Woo TS; Ritchey JM; Gibbons I; Yang YR; Schachman HK J Biol Chem; 1992 Nov; 267(31):22148-55. PubMed ID: 1429567 [TBL] [Abstract][Full Text] [Related]
9. A method for the separation of hybrids of chromatographically identical oligomeric proteins. Use of 3,4,5,6-tetrahydrophthaloyl groups as a reversible "chromatographic handle". Gibbons I; Schachman HK Biochemistry; 1976 Jan; 15(1):52-60. PubMed ID: 1247510 [TBL] [Abstract][Full Text] [Related]
10. Communication between polypeptide chains in aspartate transcarbamoylase. Conformational changes at the active sites of unliganded chains resulting from ligand binding to other chains. Lahue RS; Schachman HK J Biol Chem; 1986 Mar; 261(7):3079-84. PubMed ID: 3512547 [TBL] [Abstract][Full Text] [Related]
11. Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate transcarbamoylase. Robey EA; Schachman HK Proc Natl Acad Sci U S A; 1985 Jan; 82(2):361-5. PubMed ID: 3881763 [TBL] [Abstract][Full Text] [Related]
12. Propagation of conformational changes in Ni(II)-substituted aspartate transcarbamoylase: effect of active-site ligands on the regulatory chains. Johnson RS; Schachman HK Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1995-9. PubMed ID: 6990418 [TBL] [Abstract][Full Text] [Related]
13. Quaternary constraint in hybrid of aspartate transcarbamylase containing wild-type and mutant catalytic subunits. Gibbons I; Flatgaard JE; Schachman HK Proc Natl Acad Sci U S A; 1975 Nov; 72(11):4298-302. PubMed ID: 1105578 [TBL] [Abstract][Full Text] [Related]
14. Hybridization as a technique for studying interchain interactions in the catalytic trimers of aspartate transcarbamoylase. Yang YR; Schachman HK Anal Biochem; 1987 May; 163(1):188-95. PubMed ID: 3039866 [TBL] [Abstract][Full Text] [Related]
15. Alteration of the allosteric properties of aspartate transcarbamoylase by pyridoxylation of the catalytic and regulatory subunits. Blackburn MN; Schachman HK Biochemistry; 1976 Mar; 15(6):1316-23. PubMed ID: 766834 [TBL] [Abstract][Full Text] [Related]
16. Enzyme forms produced from aspartate transcarbamoylase by digestion with trypsin. Heyde E; Nagabhushanam A; Venkataraman S Biochem J; 1973 Sep; 135(1):125-32. PubMed ID: 4776864 [TBL] [Abstract][Full Text] [Related]
17. Aspartate transcarbamoylase: loss of homotropic but not heterotropic interactions upon modification of the catalytic subunit with a bifunctional reagent. Chan WW; Enns CA Can J Biochem; 1979 Jun; 57(6):798-805. PubMed ID: 383237 [TBL] [Abstract][Full Text] [Related]
18. Ligand-promoted weakening of intersubunit bonding domains in aspartate transcarbamolylase. Subramani S; Bothwell MA; Gibbons I; Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3777-81. PubMed ID: 333446 [TBL] [Abstract][Full Text] [Related]
20. Long range effects of amino acid substitutions in the catalytic chain of aspartate transcarbamoylase. Localized replacements in the carboxyl-terminal alpha-helix cause marked alterations in allosteric properties and intersubunit interactions. Peterson CB; Schachman HK J Biol Chem; 1992 Feb; 267(4):2443-50. PubMed ID: 1733944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]