These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 4612538)

  • 1. Determination of the absolute number of Escherichia coli membrane vesicles that catalyze active transport.
    Short SA; Kaback HR; Kaczorowski G; Fisher J; Walsh CT; Silverstein SC
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5032-6. PubMed ID: 4612538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vinylglycolate resistance in Escherichia coli.
    Shaw L; Grau F; Kaback HR; Hong JS; Walsh C
    J Bacteriol; 1975 Mar; 121(3):1047-55. PubMed ID: 1090585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inhibitory effect of the artificial electron donor system, phenazine methosulfate-ascorbate, on bacterial transport mechanisms.
    Eagon RG; Gitter BD; Rowe JJ
    J Supramol Struct; 1977; 7(1):49-59. PubMed ID: 415185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of phenazine methosulfate-ascorbate on bacterial active transport and adenosine triphosphate formation: inhibition of Pseudomonas aeruginosa and stimulation of Escherichia coli.
    Eagon RG; Hodge TW; Rake JB; Yarbrough JM
    Can J Microbiol; 1979 Jul; 25(7):798-802. PubMed ID: 113071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane.
    Reider E; Wagner EF; Schweiger M
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5529-33. PubMed ID: 392504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids.
    Konings WN; Barnes EM; Kaback HR
    J Biol Chem; 1971 Oct; 246(19):5857-61. PubMed ID: 4331061
    [No Abstract]   [Full Text] [Related]  

  • 7. Transport studies in bacterial membrane vesicles.
    Kaback HR
    Science; 1974 Dec; 186(4167):882-92. PubMed ID: 4620043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli.
    Reeves JP; Hong JS; Kaback HR
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):1917-21. PubMed ID: 4579004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible inactivation of vectorial phosphorylation by hydroxybutynoate in Escherichia coli membrane vesicles.
    Kaczorowski G; Kaback HR; Walsh C
    Biochemistry; 1975 Aug; 14(17):3903-8. PubMed ID: 1100101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the specific pyruvate transport system in Escherichia coli K-12.
    Lang VJ; Leystra-Lantz C; Cook RA
    J Bacteriol; 1987 Jan; 169(1):380-5. PubMed ID: 3025181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ascorbate-phenazine methosulfate-dependent membrane energization in respiratory chain mutants of Escherichia coli.
    Singh AP; Bragg PD
    Biochem Biophys Res Commun; 1976 Sep; 72(1):195-201. PubMed ID: 791275
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanisms of active transport in isolated membrane vesicles. IV. Galactose transport by isolated membrane vesicles from Escherichia coli.
    Kerwar GK; Gordon AS; Kaback HR
    J Biol Chem; 1972 Jan; 247(1):291-7. PubMed ID: 4623127
    [No Abstract]   [Full Text] [Related]  

  • 13. Active transport of calcium in inverted membrane vesicles of Escherichia coli.
    Rosen BP; McClees JS
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5042-6. PubMed ID: 4373740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proline transport activity in Escherichia coli membrane vesicles of different buoyant densities.
    van Heerikhuizen H; Boekhout M; Witholt B
    Biochim Biophys Acta; 1977 Nov; 470(3):453-64. PubMed ID: 336091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of the phosphoenolpyruvate-dependent phosphotransferase system in various species of bacteria by vinylglycolic acid.
    Snyder MA; Kaczorowski GJ; Barnes EM; Walsh C
    J Bacteriol; 1976 Jul; 127(1):671-3. PubMed ID: 931953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenosine uptake by isolated membrane vesicles from Escherichia coli K-12.
    Komatsu Y
    Biochim Biophys Acta; 1973 Dec; 330(2):206-21. PubMed ID: 4591127
    [No Abstract]   [Full Text] [Related]  

  • 17. Membrane transport as a potential target for antibiotic action.
    Walsh CT; Kaback HR
    Ann N Y Acad Sci; 1974 May; 235(0):519-41. PubMed ID: 4604751
    [No Abstract]   [Full Text] [Related]  

  • 18. Vinylglycolic acid. An inactivator of the phosphoenolpyruvate-phosphate transferase system in Escherichia coli.
    Walsh CT; Kaback HR
    J Biol Chem; 1973 Aug; 248(15):5456-62. PubMed ID: 4588683
    [No Abstract]   [Full Text] [Related]  

  • 19. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli.
    Lombardi FJ; Kaback HR
    J Biol Chem; 1972 Dec; 247(24):7844-57. PubMed ID: 4344983
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of the proton electrochemical gradient on maleimide inactivation of active transport in Escherichia coli membrane vesicles.
    Cohn DE; Kaczorowski GJ; Kaback HR
    Biochemistry; 1981 May; 20(11):3308-13. PubMed ID: 7018574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.