These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 4613275)
1. Comparative specificity of microbial acid proteinases for synthetic peptides. Primary specificity with Z-tetrapeptides. Oka T; Morihara K Arch Biochem Biophys; 1974 Nov; 165(1):65-71. PubMed ID: 4613275 [No Abstract] [Full Text] [Related]
2. Comparative specificity of microbial acid proteinases for synthetic peptides. 3. Relationship with their trypsinogen activating ability. Morihara K; Oka T Arch Biochem Biophys; 1973 Aug; 157(2):561-72. PubMed ID: 4581238 [No Abstract] [Full Text] [Related]
3. Comparative specificity of microbial acid proteinases for synthetic peptides. I. Primary specificity. Oka T; Morihara K Arch Biochem Biophys; 1973 Jun; 156(2):543-51. PubMed ID: 4578120 [No Abstract] [Full Text] [Related]
4. Comparative specificity of microbial acid proteinases for synthetic peptides. II. Effect of secondary interaction. Oka T; Morihara K Arch Biochem Biophys; 1973 Jun; 156(2):552-9. PubMed ID: 4578121 [No Abstract] [Full Text] [Related]
5. Studies on the interaction between Streptomyces pepsin inhibitor and several acid proteinases by means of a zinc(II)-dye complex as a probe. Nakatani H; Hiromi K; Satoi S; Oda K; murao S Biochim Biophys Acta; 1975 Jun; 391(2):415-21. PubMed ID: 238604 [TBL] [Abstract][Full Text] [Related]
6. Comparative study of various serine alkaline proteinases from microorganisms. Esterase activity against N-acylated peptide ester substrates. Morihara K; Oka T; Tsuzuki H Arch Biochem Biophys; 1974 Nov; 165(1):72-9. PubMed ID: 4441086 [No Abstract] [Full Text] [Related]
7. Comparative study of various serine proteinases from microorganisms: specificity with oligopeptides. Morihara K; Oka T; Tsuzuki H Arch Biochem Biophys; 1971 Sep; 146(1):297-305. PubMed ID: 5144031 [No Abstract] [Full Text] [Related]
8. An extracellular proteolytic enzyme from Scopulariopsis brevicaulis. II. Hydrolysis of polyamino acids. Singh K; Vézina C Can J Microbiol; 1972 Jul; 18(7):1165-7. PubMed ID: 4672254 [No Abstract] [Full Text] [Related]
9. Pepstatin-insenstive acid proteases from Scytalidium lignicolum. Kinetic study with synthetic peptides. Morihara K; Tsuzuki H; Murao S; Oda K J Biochem; 1979 Mar; 85(3):661-8. PubMed ID: 34596 [TBL] [Abstract][Full Text] [Related]
10. Enzymatic cleavage of the epsilon-peptide bond in alpha- and epsilon-substituted glycyl- and phenylalanyl-lysine peptides. Plessing A; Siebert G; Wissler JH; Puigserver AJ; Pfaender P Hoppe Seylers Z Physiol Chem; 1982 Mar; 363(3):279-93. PubMed ID: 6804347 [TBL] [Abstract][Full Text] [Related]
11. Kinetic studies on the action of Mucor pusillus, Mucor miehei acid proteases and chymosins A and B on a synthetic chromophoric hexapeptide. Martin P; Raymond MN; Bricas E; Dumas BR Biochim Biophys Acta; 1980 Apr; 612(2):410-20. PubMed ID: 6768392 [TBL] [Abstract][Full Text] [Related]
12. Extracellular enzyme production by Rhizopus and Mucor species on solid media. Thompson DP; Eribo BE Can J Microbiol; 1984 Jan; 30(1):126-8. PubMed ID: 6370396 [TBL] [Abstract][Full Text] [Related]
13. [On the stainable hydrolases determination in dermatophytes and molds]. Knoth W; Irisawa K; Knoth-Born RC Arch Klin Exp Dermatol; 1967; 228(1):82-90. PubMed ID: 4174621 [No Abstract] [Full Text] [Related]
14. Inactivation of acid proteases from Rhizopus chinensis, Aspergillus saitoi and Mucor pusillus, and calf rennin by diazoactylnorleucine methyl ester. Takahashi K; Mizobe F; Change WJ J Biochem; 1972 Jan; 71(1):161-4. PubMed ID: 4552474 [No Abstract] [Full Text] [Related]
15. SPECIFICITY OF PEPSIN AND ITS DEPENDENCE ON A POSSIBLE 'HYDROPHOBICBINDING SITE'. TANG J Nature; 1963 Sep; 199():1094-5. PubMed ID: 14066947 [No Abstract] [Full Text] [Related]
16. [Pectolytic activity of some fungi]. Verbina NM; Tsytsura OI Mikrobiologiia; 1969; 38(1):29-35. PubMed ID: 5388097 [No Abstract] [Full Text] [Related]
17. Protease production by different thermophilic fungi. Macchione MM; Merheb CW; Gomes E; da Silva R Appl Biochem Biotechnol; 2008 Mar; 146(1-3):223-30. PubMed ID: 18421600 [TBL] [Abstract][Full Text] [Related]
18. The antifungal activity of carrier peptides, L-arginyl-X-L-phenylalanine, containing amino acid antagonists or atypical non-biogenic D-amino acids in the central position. Meyer-Glauner W; Bernard E; Armstrong D; Merrifield B Zentralbl Bakteriol Mikrobiol Hyg A Med Mikrobiol Infekt Parasitol; 1982 Jun; 252(2):274-8. PubMed ID: 7124161 [TBL] [Abstract][Full Text] [Related]
19. Purification and properties of an inhibitor of microbial alkaline proteinases from barley. Mikola J; Suolinna EM Arch Biochem Biophys; 1971 Jun; 144(2):566-75. PubMed ID: 4998831 [No Abstract] [Full Text] [Related]
20. An alkaline protease from Acremonium kiliense. Specificity, kinetics, and effect of pH. van Heyningen S Eur J Biochem; 1972 Jul; 28(3):432-7. PubMed ID: 4673068 [No Abstract] [Full Text] [Related] [Next] [New Search]