These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 4614076)

  • 41. Alpha-glucosidase synthesis, respiratory enzymes and catabolite repression in yeast. 3. The correlation between the synthesis of alpha-glucosidase and that of some respiratory enzymes.
    van Wijk R
    Proc K Ned Akad Wet C; 1968; 71(2):137-51. PubMed ID: 4231152
    [No Abstract]   [Full Text] [Related]  

  • 42. Invertase messenger ribonucleic acid in Saccharomyces cerevisiae. Kinetics of formation and decay.
    Elorza MV; Lostau CM; Villanueva JR; Sentandreu R
    Biochim Biophys Acta; 1977 Apr; 475(4):638-51. PubMed ID: 322719
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Specific induction of catabolism and its relation to repression of biosynthesis in arginine metabolism of Saccharomyces cerevisiae.
    Dubois E; Hiernaux D; Grennon M; Wiame JM
    J Mol Biol; 1978 Jul; 122(4):383-406. PubMed ID: 357733
    [No Abstract]   [Full Text] [Related]  

  • 44. Non- pleiotropic nature of the gal 3 mutation in yeast.
    Adams BG; Dalbec JM
    Biochem Biophys Res Commun; 1977 Feb; 74(4):1348-54. PubMed ID: 191021
    [No Abstract]   [Full Text] [Related]  

  • 45. [Use of catabolic repression in the selection of the glucoamylase-producer Aspergillus niger].
    Ivanova VV; Erokhina LI
    Prikl Biokhim Mikrobiol; 1983; 19(6):844-50. PubMed ID: 6320159
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nutrient utilization in actinomycetes. Induction of alpha-glucosidases in Streptomyces venezuelae.
    Chatterjee S; Vining LC
    Can J Microbiol; 1981 Jul; 27(7):639-45. PubMed ID: 7028227
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic and metabolic control of trehalose and glycogen synthesis. New relationships between energy reserves, catabolite repression and maltose utilization.
    Panek AD; Sampaio AL; Braz GC; Baker SJ; Mattoon JR
    Cell Mol Biol Incl Cyto Enzymol; 1979; 25(5):345-54. PubMed ID: 394841
    [No Abstract]   [Full Text] [Related]  

  • 48. Pleiotropic control of five eucaryotic genes by multiple regulatory elements.
    Turoscy V; Cooper TG
    J Bacteriol; 1982 Sep; 151(3):1237-46. PubMed ID: 7050082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of the regulator-gene product (repressor) in catabolite repression of beta-galactosidase synthesis in Escherichia coli.
    Palmer J; Moses V
    Biochem J; 1968 Jan; 106(2):339-43. PubMed ID: 4866428
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Absence of involvement of glutamine synthetase and of NAD-linked glutamate dehydrogenase in the nitrogen catabolite repression of arginase and other enzymes in Saccharomyces cerevisiae.
    Dubois EL; Grenson M
    Biochem Biophys Res Commun; 1974 Sep; 60(1):150-7. PubMed ID: 4153896
    [No Abstract]   [Full Text] [Related]  

  • 51. Selection of yeast mutants constitutive for maltase synthesis.
    Needleman R; Eaton NR
    Mol Gen Genet; 1974; 133(2):135-40. PubMed ID: 4614063
    [No Abstract]   [Full Text] [Related]  

  • 52. Cis-dominant regulatory mutations affecting the formation of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae.
    Ciriacy M
    Mol Gen Genet; 1976 Jun; 145(3):327-33. PubMed ID: 781520
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fine structure analysis of a eukaryotic multifunctional gene.
    Bollon AP
    Nature; 1974 Aug; 250(5468):630-4. PubMed ID: 4604479
    [No Abstract]   [Full Text] [Related]  

  • 54. [On the existence of regulator genes simultaneously affecting the synthesis of biosynthetic and catabolic enzymes of arginine in Saccharomyces cerevisiae].
    Thuriaux P; Ramos F; Wiame JM; Grenson M; Béchet J
    Arch Int Physiol Biochim; 1968 Dec; 76(5):955-6. PubMed ID: 4184445
    [No Abstract]   [Full Text] [Related]  

  • 55. Control of enzyme synthesis in the lysine biosynthetic pathway of Saccharomyces cerevisiae. Evidence for a regulatory role of gene LYS14.
    Ramos F; Dubois E; Piérard A
    Eur J Biochem; 1988 Jan; 171(1-2):171-6. PubMed ID: 3123231
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein phosphatase type-1 regulatory subunits Reg1p and Reg2p act as signal transducers in the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae.
    Jiang H; Tatchell K; Liu S; Michels CA
    Mol Gen Genet; 2000 Apr; 263(3):411-22. PubMed ID: 10821175
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A carbon catabolite repression mutant of Saccharomyces cerevisiae with elevated hexokinase activity: evidence for regulatory control of hexokinase PII synthesis.
    Entian KD
    Mol Gen Genet; 1981; 184(2):278-82. PubMed ID: 7035837
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae.
    Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT
    Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic control of maltase formation in yeast. I. Strains producing high and low basal levels of enzyme.
    Khan NA; Eaton NR
    Mol Gen Genet; 1971; 112(4):317-22. PubMed ID: 5129797
    [No Abstract]   [Full Text] [Related]  

  • 60. A specific stain for alpha-glucosidases in isoelectric focusing gels.
    Spielman LL; Mowshowitz DB
    Anal Biochem; 1982 Feb; 120(1):66-70. PubMed ID: 7046505
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.