These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 4616029)

  • 1. Some properties of chloramphenicol acetyltransferase, with particular reference to the mechanism of inhibition by basic triphenylmethane dyes.
    Tanaka H; Izaki K; Takahashi H
    J Biochem; 1974 Nov; 76(5):1009-19. PubMed ID: 4616029
    [No Abstract]   [Full Text] [Related]  

  • 2. [Effect of biologically active substances on Escherichia coli chloramphenicol acetyltransferase activity].
    Solov'eva NN; Belousova II; Tereshin IM
    Antibiotiki; 1979 Jun; 24(6):436-40. PubMed ID: 378112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of human glutathione S-transferases by basic triphenylmethane dyes.
    Glanville SD; Clark AG
    Life Sci; 1997; 60(18):1535-44. PubMed ID: 9126875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rosanilins: indicator dyes for chloramphenicol-resistant enterobacteria containing chloramphenicol acetyltransferase.
    Proctor GN; Rownd RH
    J Bacteriol; 1982 Jun; 150(3):1375-82. PubMed ID: 7042691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IncP-1-beta plasmid pGNB1 isolated from a bacterial community from a wastewater treatment plant mediates decolorization of triphenylmethane dyes.
    Schlüter A; Krahn I; Kollin F; Bönemann G; Stiens M; Szczepanowski R; Schneiker S; Pühler A
    Appl Environ Microbiol; 2007 Oct; 73(20):6345-50. PubMed ID: 17675426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Stimulating effect of triphenylmethane series dyes on growth of Escherichia coli bacteria].
    Bagramian KA; Panosian GA; Trchunian AA
    Prikl Biokhim Mikrobiol; 1998; 34(3):305-8. PubMed ID: 9644712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloramphenicol acetylation in Streptomyces.
    Shaw WV; Hopwood DA
    J Gen Microbiol; 1976 May; 94(1):159-66. PubMed ID: 932687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of glutathione S-transferases from rat liver by basic triphenylmethane dyes.
    Debnam P; Glanville S; Clark AG
    Biochem Pharmacol; 1993 Mar; 45(6):1227-33. PubMed ID: 8466543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloramphenicol binding site of an fi- R-factor-specified variant of chloramphenicol acetyltransferase.
    Nitzan Y; Gozhansky S
    Arch Biochem Biophys; 1980 Apr; 201(1):115-20. PubMed ID: 6994649
    [No Abstract]   [Full Text] [Related]  

  • 10. [Study of the mechanisms of levomycetin inactivation by the palgue causative agent and Escherichia coli with episomal and chromosomal resistance. The enzymatic acetylation of levomycetin].
    Korobeĭnik NV; Lebedeva SA; Mishan'kin BN; Abramova LA; Domaradskiĭ IV
    Antibiotiki; 1975 Sep; (9):817-23. PubMed ID: 1101811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria.
    Shaw WV
    Methods Enzymol; 1975; 43():737-55. PubMed ID: 1094240
    [No Abstract]   [Full Text] [Related]  

  • 12. Influence of cationic triphenylmethane dyes upon DNA polymerization and product hydrolysis by Escherichia coli polymerase I.
    Wolfe AD
    Biochemistry; 1977 Jan; 16(1):30-3. PubMed ID: 318853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloramphenicol-sensitive Escherichia coli strain expressing the chloramphenicol acetyltransferase (cat) gene.
    Potrykus J; Wegrzyn G
    Antimicrob Agents Chemother; 2001 Dec; 45(12):3610-2. PubMed ID: 11709351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloramphenicol resistance in clinical isolates of enterobacteria: characterization of chloramphenicol acetyltransferases.
    Rivera MJ; Cabello A; Gomez-Lus R
    J Chemother; 1989 Jul; 1(4 Suppl):309-10. PubMed ID: 16312415
    [No Abstract]   [Full Text] [Related]  

  • 15. Distribution of chloramphenicol acetyltransferase and chloramphenicol-3-acetate esterase among Streptomyces and Corynebacterium.
    Nakano H; Matsuhashi Y; Takeuchi T; Umezawa H
    J Antibiot (Tokyo); 1977 Jan; 30(1):76-82. PubMed ID: 838634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH on the antimicrobial activity of some triphenylmethane dyes.
    Moats WA; Maddox SE
    Can J Microbiol; 1978 Jun; 24(6):658-61. PubMed ID: 27297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Chloramphenicol resistance of different strains of Escherichia coli. Acetylation of the antibiotic].
    Piffaretti JC; Pitton JS
    Pathol Microbiol (Basel); 1969; 34(3):151-2. PubMed ID: 4908451
    [No Abstract]   [Full Text] [Related]  

  • 18. [Gentian violet as a selection factor in obtaining auxotrophic mutants].
    Shivarova N; Markov K
    Acta Microbiol Bulg; 1980; 6():25-30. PubMed ID: 7041526
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibition of chloramphenicol O-acetyltransferase of Escherichia coli by basic triphenylmethane dyes.
    Tanaka H; Kudo O; Sato K; Izaki K; Takahashi H
    J Antibiot (Tokyo); 1971 May; 24(5):324-5. PubMed ID: 4931963
    [No Abstract]   [Full Text] [Related]  

  • 20. Outer penetration barrier of Escherichia coli K-12: kinetics of the uptake of gentian violet by wild type and envelope mutants.
    Gustafsson P; Nordström K; Normark S
    J Bacteriol; 1973 Nov; 116(2):893-900. PubMed ID: 4583255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.