BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 4616940)

  • 1. Characterization of a dominant, constitutive mutation, PHOO, for the repressible acid phosphatase synthesis in Saccharomyces cerevisiae.
    Toh-E A; Oshima Y
    J Bacteriol; 1974 Nov; 120(2):608-17. PubMed ID: 4616940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of acid phosphatase mutants in Saccharomyces cerevisiae.
    To-E A; Ueda Y; Kakimoto SI; Oshima Y
    J Bacteriol; 1973 Feb; 113(2):727-38. PubMed ID: 4570606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of recessive, constitutive mutations for repressible acid phosphatase synthesis in Saccharomyces cerevisiae.
    Ueda Y; To-E A; Oshima Y
    J Bacteriol; 1975 Jun; 122(3):911-22. PubMed ID: 1097406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genes coding for the structure of the acid phosphatases in Saccharomyces cerevisiae.
    Toh-e A; Kakimoto S
    Mol Gen Genet; 1975 Dec; 143(1):65-70. PubMed ID: 765744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of the PHO82-pho4 locus controlling the synthesis of repressible acid phosphatase of Saccharomyces cerevisiae.
    Toh-e A; Inouye S; Oshima Y
    J Bacteriol; 1981 Jan; 145(1):221-32. PubMed ID: 7007314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of super-repressible and dominant constitutive mutations for the synthesis of galactose pathway enzymes in Saccharomyces cerevisiae.
    Nogi Y; Matsumoto K; Toh-e A; Oshima Y
    Mol Gen Genet; 1977 Apr; 152(3):137-44. PubMed ID: 327270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic control of galactokinase synthesis in Saccharomyces cerevisiae: evidence for constitutive expression of the positive regulatory gene gal4.
    Matsumoto K; Toh-e A; Oshima Y
    J Bacteriol; 1978 May; 134(2):446-57. PubMed ID: 207666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disturbance of the machinery for the gene expression by acidic pH in the repressible acid phosphatase system of Saccharomyces cerevisiae.
    Toh-e A; Kobayashi S; Oshima Y
    Mol Gen Genet; 1978 Jun; 162(2):139-49. PubMed ID: 27717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of repressible acid phosphatase by cyclic AMP in Saccharomyces cerevisiae.
    Matsumoto K; Uno I; Ishikawa T
    Genetics; 1984 Sep; 108(1):53-66. PubMed ID: 6090271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An insertion mutation associated with constitutive expression of repressible acid phosphatase in Saccharomyces cerevisiae.
    Toh-e A; Kaneko Y; Akimaru J; Oshima Y
    Mol Gen Genet; 1983; 191(3):339-46. PubMed ID: 6314088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the genetic locus for the structural gene and a new regulatory gene for the synthesis of repressible alkaline phosphatase in Saccharomyces cerevisiae.
    Kaneko Y; Toh-e A; Oshima Y
    Mol Cell Biol; 1982 Feb; 2(2):127-37. PubMed ID: 7050668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gene controlling the synthesis of non specific alkaline phosphatase in Saccharomyces cerevisiae.
    Toh-E A; Nakamura H; Oshima Y
    Biochim Biophys Acta; 1976 Mar; 428(1):182-92. PubMed ID: 769832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identity of soluble thiamine-binding protein with thiamine repressible acid phosphatase in Saccharomyces cerevisiae.
    Nosaka K; Nishimura H; Iwashima A
    Yeast; 1989 Apr; 5 Spec No():S447-51. PubMed ID: 2665373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of repressible acid phosphatase by unsaturated fatty acid in Saccharomyces cerevisiae.
    Doi S; Watanabe M; Tanabe K; Nakasako M; Yoshimura M
    J Cell Sci; 1989 Nov; 94 ( Pt 3)():511-6. PubMed ID: 2698891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of thiamine biosynthesis in Saccharomyces cerevisiae.
    Kawasaki Y; Nosaka K; Kaneko Y; Nishimura H; Iwashima A
    J Bacteriol; 1990 Oct; 172(10):6145-7. PubMed ID: 2170344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the transcriptionally repressed phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; Stranathan MC; Preis LH
    Mol Cell Biol; 1986 Jan; 6(1):38-46. PubMed ID: 3537687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of further cis- and trans-acting regulatory elements involved in the synthesis of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae.
    Ciriacy M
    Mol Gen Genet; 1979 Nov; 176(3):427-31. PubMed ID: 392242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of inorganic phosphate transport systems in Saccharomyces cerevisiae.
    Tamai Y; Toh-e A; Oshima Y
    J Bacteriol; 1985 Nov; 164(2):964-8. PubMed ID: 3902805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A constitutive mutation, phoT, of the repressible acid phosphatase synthesis with inability to transport inorganic phosphate in Saccharomyces cerevisiae.
    Ueda Y; Oshima Y
    Mol Gen Genet; 1975; 136(3):255-9. PubMed ID: 16094976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of repressible acid phosphatase gene transcription in Saccharomyces cerevisiae.
    Lemire JM; Willcocks T; Halvorson HO; Bostian KA
    Mol Cell Biol; 1985 Aug; 5(8):2131-41. PubMed ID: 3915785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.