These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 4616940)

  • 21. [Genetico-biochemical study of the acid phosphatases of Saccharomyces cerevisiae yeasts. X. Analysis of mutations arising in gene acp3].
    Kozhin SA; Samsonova MG; Maarich MA; Smirnov MN
    Genetika; 1980; 16(3):408-17. PubMed ID: 6995224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of arginine biosynthesis in Saccharomyces cerevisiae: isolation of a cis-dominant, constitutive mutant for ornithine carbamoyltransferase synthesis.
    Messenguy F
    J Bacteriol; 1976 Oct; 128(1):49-55. PubMed ID: 789352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two new genes controlling the constitutive acid phosphatase synthesis in Saccharomyces cerevisiae.
    Toh-e A; Kakimoto S; Oshima Y
    Mol Gen Genet; 1975 Nov; 141(1):81-3. PubMed ID: 765726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of repressible acid phosphatase in Saccharomyces cerevisiae under conditions of enzyme instability.
    Bostian KA; Lemire JM; Halvorson HO
    Mol Cell Biol; 1982 Jan; 2(1):1-10. PubMed ID: 7050664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical and genetic evidence that yeast extracellular protein phosphatase activity is due to acid phosphatase.
    Lopandic K; Deana AD; Barbaric S; Pinna LA
    Biochem Int; 1987 Apr; 14(4):627-33. PubMed ID: 2839178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutation thi81 causing a deficiency in the signal transduction of thiamine pyrophosphate in Saccharomyces cerevisiae.
    Nishimura H; Kawasaki Y; Nosaka K; Kaneko Y
    FEMS Microbiol Lett; 1997 Nov; 156(2):245-9. PubMed ID: 9513273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identity of soluble thiamin-binding protein with thiamin-repressible acid phosphatase in Saccharomyces cerevisiae.
    Nosaka K; Nishimura H; Iwashima A
    Biochim Biophys Acta; 1988 Oct; 967(1):49-55. PubMed ID: 3048416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Function of positive regulatory gene gal4 in the synthesis of galactose pathway enzymes in Saccharomyces cerevisiae: evidence that the GAL81 region codes for part of the gal4 protein.
    Matsumoto K; Adachi Y; Toh-e A; Oshima Y
    J Bacteriol; 1980 Feb; 141(2):508-27. PubMed ID: 6988385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uninducible mutants in the gal i locus of Saccharomyces cerevisiae.
    Douglas HC; Hawthorne CD
    J Bacteriol; 1972 Mar; 109(3):1139-43. PubMed ID: 4551746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Formation of secreted acid phosphatase during the growth of Saccharomyces cerevisiae yeasts on different sources of carbon and nitrogen nutrition].
    Semenova IN; Egorov SN; Egorov NS
    Mikrobiologiia; 1986; 55(5):796-9. PubMed ID: 3547042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Genetico-biochemical study of acid phosphatases in Saccharomyces cerevisiae yeast. V. Genetic control of regulation of acid phosphatase II synthesis].
    Samsonova MG; Padkina MV; Krasnopevtseva NG; Kozhin SA; Smirnov MN
    Genetika; 1975; 11(9):104-15. PubMed ID: 765203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cis-dominant regulatory mutations affecting the formation of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae.
    Ciriacy M
    Mol Gen Genet; 1976 Jun; 145(3):327-33. PubMed ID: 781520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation of regulatory mutants in Saccharomyces cerevisiae.
    Greer H; Fink GR
    Methods Cell Biol; 1975; 11():247-72. PubMed ID: 1102851
    [No Abstract]   [Full Text] [Related]  

  • 34. The pho-2A mutant of Neurospora crassa which is deficient in Pi-repressible alkaline phosphatase (EC 3.1.3.1) is also defective in Pi-repressible acid phosphatase (EC 3.1.3.2).
    Han SW; Maccheroni W; Rossi A
    Braz J Med Biol Res; 1992; 25(5):441-7. PubMed ID: 1342219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High affinity of acid phosphatase encoded by PHO3 gene in Saccharomyces cerevisiae for thiamin phosphates.
    Nosaka K
    Biochim Biophys Acta; 1990 Feb; 1037(2):147-54. PubMed ID: 2407294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation of constitutive mutations affecting the proline utilization pathway in Saccharomyces cerevisiae and molecular analysis of the PUT3 transcriptional activator.
    Marczak JE; Brandriss MC
    Mol Cell Biol; 1989 Nov; 9(11):4696-705. PubMed ID: 2689861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro synthesis of repressible yeast acid phosphatase: identification of multiple mRNAs and products.
    Bostian KA; Lemire JM; Cannon LE; Halvorson HO
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4504-8. PubMed ID: 7001459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Genetic and biochemical study of yeast acid phosphatases. XI. Gene ACP80 controls inorganic phosphate transport].
    Sambuk EV; Alenin VV; Kozhin SA
    Genetika; 1985 Sep; 21(9):1449-54. PubMed ID: 3905510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic and biochemical studies of phosphomannose isomerase deficient mutants of Saccharomyces cerevisiae.
    Herrera LS; Pascual C; Alvarez X
    Mol Gen Genet; 1976 Mar; 144(2):223-30. PubMed ID: 775296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and characterization of a Saccharomyces cerevisiae mutant with impaired glutamate synthase activity.
    Folch JL; Antaramián A; Rodríguez L; Bravo A; Brunner A; González A
    J Bacteriol; 1989 Dec; 171(12):6776-81. PubMed ID: 2687252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.