These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 4616940)

  • 41. Identification and characterization of thiamin repressible acid phosphatase in yeast.
    Schweingruber ME; Fluri R; Maundrell K; Schweingruber AM; Dumermuth E
    J Biol Chem; 1986 Dec; 261(34):15877-82. PubMed ID: 3536917
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Repressible acid phosphatase from yeast efficiently dephosphorylates in vitro some phosphorylated proteins and peptides.
    Pavlovic B; Brunati AM; Barbaric S; Pinna LA
    Biochem Biophys Res Commun; 1985 Jun; 129(2):350-7. PubMed ID: 3893426
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A constitutive thiamine metabolism mutation, thi80, causing reduced thiamine pyrophosphokinase activity in Saccharomyces cerevisiae.
    Nishimura H; Kawasaki Y; Nosaka K; Kaneko Y; Iwashima A
    J Bacteriol; 1991 Apr; 173(8):2716-9. PubMed ID: 1849514
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Function of the PHO regulatory genes for repressible acid phosphatase synthesis in Saccharomyces cerevisiae.
    Yoshida K; Ogawa N; Oshima Y
    Mol Gen Genet; 1989 May; 217(1):40-6. PubMed ID: 2671650
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetic studies with a phosphoglucose isomerase mutant of Saccharomyces cerevisiae.
    Maitra PK; Lobo Z
    Mol Gen Genet; 1977 Nov; 156(1):55-60. PubMed ID: 340892
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intracellular maturation and secretion of acid phosphatase of Saccharomyces cerevisiae.
    Schönholzer F; Schweingruber AM; Trachsel H; Schweingruber ME
    Eur J Biochem; 1985 Mar; 147(2):273-9. PubMed ID: 3882424
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A possible role for acid phosphatase with thiamin-binding activity encoded by PHO3 in yeast.
    Nosaka K; Kaneko Y; Nishimura H; Iwashima A
    FEMS Microbiol Lett; 1989 Jul; 51(1):55-9. PubMed ID: 2676709
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae.
    Bun-ya M; Shikata K; Nakade S; Yompakdee C; Harashima S; Oshima Y
    Curr Genet; 1996 Mar; 29(4):344-51. PubMed ID: 8598055
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purification, carbohydrate composition and kinetic properties of the constitutive yeast acid phosphatase.
    Mrsa V; Barbarić S; Ries B; Mildner P
    Biochem Int; 1985 Apr; 10(4):567-75. PubMed ID: 3896242
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Possible existence of alternative secretion routes of acid phosphatase in the yeast Saccharomyces cerevisiae].
    Shnyreva MG; Egorov SN
    Mikrobiologiia; 1990; 59(6):948-55. PubMed ID: 2087206
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Purification and identification of inactive forms of repressible and constitutive acid phosphatase in yeast.
    Schweingruber AM; Schweingruber ME
    Biochim Biophys Acta; 1982 Aug; 717(2):203-9. PubMed ID: 6810953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Isolation and characterization of dominant mutations resistant to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae.
    Matsumoto K; Toh-e A; Oshima Y
    Mol Cell Biol; 1981 Feb; 1(2):83-93. PubMed ID: 6765598
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RNA and homology mapping of two DNA fragments with repressible acid phosphatase genes from Saccharomyces cerevisiae.
    Andersen N; Thill GP; Kramer RA
    Mol Cell Biol; 1983 Apr; 3(4):562-9. PubMed ID: 6343839
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reciprocal regulation of the tandemly duplicated PHO5/PHO3 gene cluster within the acid phosphatase multigene family of Saccharomyces cerevisiae.
    Tait-Kamradt AG; Turner KJ; Kramer RA; Elliott QD; Bostian SJ; Thill GP; Rogers DT; Bostian KA
    Mol Cell Biol; 1986 Jun; 6(6):1855-65. PubMed ID: 3537710
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Secretion of an active nonglycosylated form of the repressible acid phosphatase of Saccharomyces cerevisiae in the presence of tunicamycin at low temperatures.
    Mizunaga T; Izawa M; Ikeda K; Maruyama Y
    J Biochem; 1988 Feb; 103(2):321-6. PubMed ID: 3286630
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Analysis of the quaternary structure of secreted repressible acid phosphatase from the yeast Saccharomyces cerevisiae].
    Shnyreva MG; Tsuprun VL; Stel'mashchuk VIa; Egorov SN
    Biokhimiia; 1992 Jul; 57(7):1100-8. PubMed ID: 1391215
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural analysis of the two tandemly repeated acid phosphatase genes in yeast.
    Bajwa W; Meyhack B; Rudolph H; Schweingruber AM; Hinnen A
    Nucleic Acids Res; 1984 Oct; 12(20):7721-39. PubMed ID: 6093051
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Posttranslational regulation of repressible acid phosphatase in yeast.
    Schweingruber ME; Schweingruber AM
    Mol Gen Genet; 1979 Jun; 173(3):349-51. PubMed ID: 384156
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the Saccharomyces cerevisiae cdc42-1ts allele and new temperature-conditional-lethal cdc42 alleles.
    Miller PJ; Johnson DI
    Yeast; 1997 May; 13(6):561-72. PubMed ID: 9178507
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mode of expression of the positive regulatory genes PHO2 and PHO4 of the phosphatase regulon in Saccharomyces cerevisiae.
    Yoshida K; Kuromitsu Z; Ogawa N; Oshima Y
    Mol Gen Genet; 1989 May; 217(1):31-9. PubMed ID: 2505053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.