These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 4616943)
1. Regulation of the beta-glucoside system in Escherchia coli K-12. Prasad I; Schaefler S J Bacteriol; 1974 Nov; 120(2):638-50. PubMed ID: 4616943 [TBL] [Abstract][Full Text] [Related]
2. Positive and negative regulation of the bgl operon in Escherichia coli. Mahadevan S; Reynolds AE; Wright A J Bacteriol; 1987 Jun; 169(6):2570-8. PubMed ID: 3294798 [TBL] [Abstract][Full Text] [Related]
3. Cryptic operon for beta-glucoside metabolism in Escherichia coli K12: genetic evidence for a regulatory protein. Defez R; De Felice M Genetics; 1981 Jan; 97(1):11-25. PubMed ID: 6266910 [TBL] [Abstract][Full Text] [Related]
4. Genetic determination of the constitutive biosynthesis of phospho- -glucosidase A in Escherichia coli K-12. Prasad I; Young B; Schaefler S J Bacteriol; 1973 Jun; 114(3):909-15. PubMed ID: 4576407 [TBL] [Abstract][Full Text] [Related]
5. Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. Schnetz K; Toloczyki C; Rak B J Bacteriol; 1987 Jun; 169(6):2579-90. PubMed ID: 3034860 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the beta-glucoside utilization (bgl) genes of Shigella sonnei: evolutionary implications for their maintenance in a cryptic state. Kharat AS; Mahadevan S Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():2039-2049. PubMed ID: 10931908 [TBL] [Abstract][Full Text] [Related]
7. The beta-glucoside genes of Klebsiella aerogenes: conservation and divergence in relation to the cryptic bgl genes of Escherichia coli. Raghunand TR; Mahadevan S FEMS Microbiol Lett; 2003 Jun; 223(2):267-74. PubMed ID: 12829297 [TBL] [Abstract][Full Text] [Related]
8. Nucleotide sequence of bglC, the gene specifying enzymeIIbgl of the PEP:sugar phosphotransferase system in Escherichia coli K12, and overexpression of the gene product. Bramley HF; Kornberg HL J Gen Microbiol; 1987 Mar; 133(3):563-73. PubMed ID: 3309161 [TBL] [Abstract][Full Text] [Related]
9. Inducible system for the utilization of beta-glucosides in Escherichia coli. II. Description of mutant types and genetic analysis. Schaefler S; Maas WK J Bacteriol; 1967 Jan; 93(1):264-72. PubMed ID: 5335893 [TBL] [Abstract][Full Text] [Related]
10. New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. Le Coq D; Lindner C; Krüger S; Steinmetz M; Stülke J J Bacteriol; 1995 Mar; 177(6):1527-35. PubMed ID: 7883710 [TBL] [Abstract][Full Text] [Related]
11. BglR protein, which belongs to the BglG family of transcriptional antiterminators, is involved in beta-glucoside utilization in Lactococcus lactis. Bardowski J; Ehrlich SD; Chopin A J Bacteriol; 1994 Sep; 176(18):5681-5. PubMed ID: 8083160 [TBL] [Abstract][Full Text] [Related]
12. Activation of a cryptic gene by excision of a DNA fragment. Parker LL; Betts PW; Hall BG J Bacteriol; 1988 Jan; 170(1):218-22. PubMed ID: 2826393 [TBL] [Abstract][Full Text] [Related]
13. Phenotypic variability of beta-glucoside utilization and its correlation to pathogenesis process in a few enteric bacteria. Kharat AS FEMS Microbiol Lett; 2001 May; 199(2):241-6. PubMed ID: 11377874 [TBL] [Abstract][Full Text] [Related]
14. Diverse pathways for salicin utilization in Shigella sonnei and Escherichia coli carrying an impaired bgl operon. Desai SK; Nandimath K; Mahadevan S Arch Microbiol; 2010 Oct; 192(10):821-33. PubMed ID: 20697693 [TBL] [Abstract][Full Text] [Related]
15. Phosphotransferase System Uptake and Metabolism of the β-Glucoside Salicin Impact Group A Streptococcal Bloodstream Survival and Soft Tissue Infection. Braza RE; Silver AB; Sundar GS; Davis SE; Razi A; Islam E; Hart M; Zhu J; Le Breton Y; McIver KS Infect Immun; 2020 Sep; 88(10):. PubMed ID: 32719156 [No Abstract] [Full Text] [Related]
16. Expression of β-Glucosidases from the Yak Rumen in Lactic Acid Bacteria: A Genetic Engineering Approach. Wang C; Yang Y; Ma C; Sunkang Y; Tang S; Zhang Z; Wan X; Wei Y Microorganisms; 2023 May; 11(6):. PubMed ID: 37374889 [TBL] [Abstract][Full Text] [Related]
17. A unitary account of the repression mechanism of arginine biosynthesis in Escherichia coli. I. The genetic evidence. Jacoby GA; Gorini L J Mol Biol; 1969 Jan; 39(1):73-87. PubMed ID: 4938817 [No Abstract] [Full Text] [Related]
18. Cloning and expression of beta-glucosidase genes in Escherichia coli and Saccharomyces cerevisiae using shuttle vector pYES 2.0. Rajoka MI; Bashir A; Hussain SR; Ghauri MT; Parvez S; Malik KA Folia Microbiol (Praha); 1998; 43(2):129-35. PubMed ID: 9721604 [TBL] [Abstract][Full Text] [Related]
19. Identification of catalytic residues in the beta-glucoside permease of Escherichia coli by site-specific mutagenesis and demonstration of interdomain cross-reactivity between the beta-glucoside and glucose systems. Schnetz K; Sutrina SL; Saier MH; Rak B J Biol Chem; 1990 Aug; 265(23):13464-71. PubMed ID: 2199437 [TBL] [Abstract][Full Text] [Related]
20. Differential spectrum of mutations that activate the Escherichia coli bgl operon in an rpoS genetic background. Moorthy S; Mahadevan S J Bacteriol; 2002 Jul; 184(14):4033-8. PubMed ID: 12081976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]