These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4618019)

  • 1. [Further investigations on the suitability of gelatine filters for the collection of airborne bacteria].
    Koller W; Rotter M
    Zentralbl Bakteriol Orig B; 1974 Dec; 159(5-6):546-59. PubMed ID: 4618019
    [No Abstract]   [Full Text] [Related]  

  • 2. [Sampling of air-borne bacteria by gelatine-foam-filters].
    Rotter M; Koller W
    Zentralbl Bakteriol Orig B; 1973 May; 157(2):257-70. PubMed ID: 4581892
    [No Abstract]   [Full Text] [Related]  

  • 3. [Comparative studies of gelatin and cellulose ester membrane filters for their suitability in determining the microorganism count in the air].
    Hecker W; Meier R; Thevenin JP; Hartberger K
    Zentralbl Bakteriol Mikrobiol Hyg B; 1983 Jun; 177(5):375-93. PubMed ID: 6367306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular comparison of the sampling efficiency of four types of airborne bacterial samplers.
    Li K
    Sci Total Environ; 2011 Nov; 409(24):5493-8. PubMed ID: 21968260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of bacterial filtration in various commercial air filters for hospital air conditioning.
    Furuhashi M
    Bull Tokyo Med Dent Univ; 1978 Sep; 25(3):147-55. PubMed ID: 359187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparative studies on methods for the isolation of bacteriophages from aerosols as well as on the retaining capacity of filters and impingers for bacteriophage aerosols].
    Haferkorn R; Schneweis KE; Brandis H
    Arch Hyg Bakteriol; 1968 Apr; 152(2):97-106. PubMed ID: 5707380
    [No Abstract]   [Full Text] [Related]  

  • 7. Investigations on the survival time of outdoor microorganisms on air filters.
    Möritz M; Schleibinger H; Rüden H
    Zentralbl Hyg Umweltmed; 1998 Jun; 201(2):125-33. PubMed ID: 9686443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Personal air samplers for measuring occupational exposures to biological hazards.
    Macher JM; First MW
    Am Ind Hyg Assoc J; 1984 Feb; 45(2):76-83. PubMed ID: 6702610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental pollution analysis with the millipore membrane filter.
    Environ Lett; 1971; 1(2):89-93. PubMed ID: 5140229
    [No Abstract]   [Full Text] [Related]  

  • 10. Simple liquid scrubber for large-volume air sampling.
    Buchanan LM; Harstad JB; Phillips JC; Lafferty E; Dahlgren CM; Decker HM
    Appl Microbiol; 1972 Jun; 23(6):1140-4. PubMed ID: 4625342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the commercial bacterial air samplers by the new bacterial aerosol generator.
    Furuhashi M; Miyamae T
    Bull Tokyo Med Dent Univ; 1981 Mar; 28(1):7-21. PubMed ID: 7011587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Experimental investigations on the spread of Pseudomonas aeruginosa by a cold aerosol apparatus for moistening of the room atmosphere].
    Klein HJ; Kunze M
    Zentralbl Bakteriol Orig; 1971; 216(2):199-209. PubMed ID: 4994624
    [No Abstract]   [Full Text] [Related]  

  • 13. Evaluation of bioaerosol sampling techniques for the detection of Chlamydophila psittaci in contaminated air.
    Van Droogenbroeck C; Van Risseghem M; Braeckman L; Vanrompay D
    Vet Microbiol; 2009 Mar; 135(1-2):31-7. PubMed ID: 18963601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle size distributions and concentrations of airborne endotoxin using novel collection methods in homes during the winter and summer seasons.
    Kujundzic E; Hernandez M; Miller SL
    Indoor Air; 2006 Jun; 16(3):216-26. PubMed ID: 16683940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Much greater use of high-efficiency particulate air filters in hospitals needed.
    Curtis L
    Am J Infect Control; 2007 Mar; 35(2):138. PubMed ID: 17327196
    [No Abstract]   [Full Text] [Related]  

  • 16. [The use of individual protective devices for decreasing the microbial contamination of the inhaled air].
    Sedov AV; Akin'shin AV; Tregub TI
    Med Tr Prom Ekol; 1995; (5):42-4. PubMed ID: 7663856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for biological testing of containment systems for viral agents.
    Bolton NE; Lincoln TA; Otten JA; Porter WE
    Am Ind Hyg Assoc J; 1976 Jul; 37(7):427-31. PubMed ID: 785996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of "Biotest RCS" as a sampler of airborne bacteria.
    Kaye S
    J Parenter Sci Technol; 1988; 42(5):147-52. PubMed ID: 3199265
    [No Abstract]   [Full Text] [Related]  

  • 19. Detection and enumeration of airborne biocontaminants.
    Stetzenbach LD; Buttner MP; Cruz P
    Curr Opin Biotechnol; 2004 Jun; 15(3):170-4. PubMed ID: 15193322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term effect of humid airflow on antimicrobial air filters using Sophora flavescens nanoparticles.
    Hwang GB; Lee JE; Nho CW; Lee BU; Lee SJ; Jung JH; Bae GN
    Sci Total Environ; 2012 Apr; 421-422():273-9. PubMed ID: 22369866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.