These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 4618572)

  • 41. [Scury and purine catabolism].
    Hitier Y
    Int J Vitam Nutr Res; 1974; 44(3):291-301. PubMed ID: 4459283
    [No Abstract]   [Full Text] [Related]  

  • 42. Protein digestion and amino acid absorption along the intestine of the common carp (Cyprinus carpio L.), a stomachless fish: an in vivo study.
    Dabrowski K
    Reprod Nutr Dev (1980); 1986; 26(3):755-66. PubMed ID: 3749594
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Fasting and realimentation in the carp (Cyprinus carpio L.): VII. Metabolism of glucose-1-14C and of glucose-6-14C].
    Creach Y; Murat JC
    Arch Sci Physiol (Paris); 1974; 28(2):157-72. PubMed ID: 4469437
    [No Abstract]   [Full Text] [Related]  

  • 44. Studies on immunological properties of enolase from carp muscles (Cyprinus carpio) after chemical modification of some amino-acid residues.
    Kustrzeba-Wójcicka I; Pietkiewicz J; Wolna E
    Arch Immunol Ther Exp (Warsz); 1986; 34(1):93-9. PubMed ID: 2430546
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Studies on the physiology of Bacillus fastidiosus.
    Kaltwasser H
    J Bacteriol; 1971 Sep; 107(3):780-6. PubMed ID: 5095289
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Variations of proteolytic activity of common carp tissue (Cyprinus carpio L.) during prolonged fasting].
    Creach Y; Nopoly L; Serfaty A
    Arch Sci Physiol (Paris); 1969; 23(3):351-64. PubMed ID: 5807997
    [No Abstract]   [Full Text] [Related]  

  • 47. Chemical modification of histidine, tyrosine, tryptophan and cysteine residues in carp (Cyprinus carpio) muscle enolase.
    Pietkiewicz J; Kustrzeba-Wójcicka I; Wolna E; Wolny M
    Biochem Int; 1987 May; 14(5):805-14. PubMed ID: 3454643
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Postprandial metabolic changes in larval and juvenile carp (Cyprinus carpio).
    Kaushik SJ; Dabrowski K
    Reprod Nutr Dev (1980); 1983; 23(2a):223-34. PubMed ID: 6844717
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nitrogen metabolism in channel catfish, Ictalurus punctatus. 3. Relative pool sizes of free amino acids and related compounds in various tissues of the catfish.
    Wilson RP; Poe WE
    Comp Biochem Physiol B; 1974 Aug; 48(4):545-56. PubMed ID: 4842056
    [No Abstract]   [Full Text] [Related]  

  • 50. A possible metabolic pathway of gamma-guanido- and gamma-guanido-beta-oxy-butyric acid by heteroarginase.
    KITA T; KAMIYA H; KIMURA M
    Jpn J Pharmacol; 1961 Sep; 11():1-3. PubMed ID: 14456496
    [No Abstract]   [Full Text] [Related]  

  • 51. Polymorphism of parvalbumins and tissue distribution: characterization of component I, isolated from red muscles of Cyprinus carpio L.
    Gosselin-Rey C; Piront A; Gerday C
    Biochim Biophys Acta; 1978 Feb; 532(2):294-304. PubMed ID: 75026
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ammonia production from uric acid, urea, and amino acids and its absorption from the ceca of the cockerel.
    Karasawa Y
    J Exp Zool Suppl; 1989; 3():75-80. PubMed ID: 2575132
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification and characterization of Cu,Zn-superoxide dismutase from common carp liver.
    Víg E; Gabrielak T; Leyko W; Nemcsók J; Matkovics B
    Comp Biochem Physiol B; 1989; 94(2):395-7. PubMed ID: 2591201
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of gluconeogenesis and glucagon-induced hyperglycemia in carp (Cyprinus carpio L.).
    Murat JC; Castilla C; Paris H
    Gen Comp Endocrinol; 1978 Feb; 34(2):243-6. PubMed ID: 631544
    [No Abstract]   [Full Text] [Related]  

  • 55. Modulation of Rh glycoproteins, ammonia excretion and Na+ fluxes in three freshwater teleosts when exposed chronically to high environmental ammonia.
    Sinha AK; Liew HJ; Nawata CM; Blust R; Wood CM; De Boeck G
    J Exp Biol; 2013 Aug; 216(Pt 15):2917-30. PubMed ID: 23661781
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ammonia metabolism, urea cycle capacity and their biochemical assessment.
    Visek WJ
    Nutr Rev; 1979 Sep; 37(9):273-82. PubMed ID: 394043
    [No Abstract]   [Full Text] [Related]  

  • 57. Accumulation of pollutants in fish.
    Gluth G; Freitag D; Hanke W; Korte F
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 81(2):273-7. PubMed ID: 2861946
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Postprandial increases in nitrogenous excretion and urea synthesis in the Chinese soft-shelled turtle, Pelodiscus sinensis.
    Lee SM; Wong WP; Loong AM; Hiong KC; Chew SF; Ip YK
    J Comp Physiol B; 2007 Jan; 177(1):19-29. PubMed ID: 16838133
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Seasonal changes in the content of catecholamines and DOPA in tissues of the carp Cyrpinus carpio].
    Pustovoĭtova-Vosilene ME
    Zh Evol Biokhim Fiziol; 1972; 8(1):93-4. PubMed ID: 4647994
    [No Abstract]   [Full Text] [Related]  

  • 60. Recapture of [S]-allantoin, the product of the two-step degradation of uric acid, by urate oxidase.
    Gabison L; Chiadmi M; Colloc'h N; Castro B; El Hajji M; Prangé T
    FEBS Lett; 2006 Apr; 580(8):2087-91. PubMed ID: 16545381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.