These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 4622051)

  • 41. Improved animal production by genetic engineering of ruminal bacteria.
    Brooker JD; Thomson AM; Ward H
    Australas Biotechnol; 1992 Oct; 2(5):288-91. PubMed ID: 1368926
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Continuous culture of ruminal microorganisms in chemically defined medium. I. Design of continuous-culture apparatus.
    QUINN LY
    Appl Microbiol; 1962 Nov; 10(6):580-2. PubMed ID: 13972781
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Symposium on 'manipulation of rumen fermentation'. Chairman's introduction.
    Rook JA
    Proc Nutr Soc; 1972 Sep; 31(2):125-6. PubMed ID: 4628390
    [No Abstract]   [Full Text] [Related]  

  • 44. Role of rumen protozoa in the digestion of food cellulosic materials.
    Jouany JP; Senaud J
    Ann Rech Vet; 1979; 10(2-3):261-3. PubMed ID: 119468
    [No Abstract]   [Full Text] [Related]  

  • 45. Ruminal evacuation's effect on microbial activity and ruminal function.
    Towne G; Nagaraja TG; Owensby C; Harmon D
    J Anim Sci; 1986 Mar; 62(3):783-8. PubMed ID: 3084437
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of increased levels of urea in the diet on ruminal protozoal counts in four ruminant species.
    Nour AM; Abou Akkada AR; el-Shazly K; Naga MA; Borhami BE; Abaza MA
    J Anim Sci; 1979 Nov; 49(5):1300-5. PubMed ID: 120355
    [No Abstract]   [Full Text] [Related]  

  • 47. Fatty acid composition of ruminal bacteria and protozoa, and effect of defaunation on fatty acid profile in the rumen with special reference to conjugated linoleic acid in cattle.
    Sultana H; Miyazawa K; Kanda S; Itabashi H
    Anim Sci J; 2011 Jun; 82(3):434-40. PubMed ID: 21615837
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Changes in the ruminal contents in suppurative surgical infection in cattle].
    Petrov M
    Vet Med Nauki; 1979; 16(5):29-34. PubMed ID: 44584
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model.
    Mao SY; Huo WJ; Zhu WY
    Environ Microbiol; 2016 Feb; 18(2):525-41. PubMed ID: 25471302
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The metabolic characterization of the ciliate protozoon Eudiplodinium medium from the rumen of buffalo.
    Naga MA; el-Shazly K
    J Gen Microbiol; 1968 Oct; 53(3):305-15. PubMed ID: 4976557
    [No Abstract]   [Full Text] [Related]  

  • 51. Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential.
    Rey M; Enjalbert F; Combes S; Cauquil L; Bouchez O; Monteils V
    J Appl Microbiol; 2014 Feb; 116(2):245-57. PubMed ID: 24279326
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vivo mechanical and in vitro electromagnetic side-effects of a ruminal transponder in cattle.
    Antonini C; Trabalza-Marinucci M; Franceschini R; Mughetti L; Acuti G; Faba A; Asdrubali G; Boiti C
    J Anim Sci; 2006 Nov; 84(11):3133-42. PubMed ID: 17032809
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparing the responses of rumen ciliate protozoa and bacteria to excess carbohydrate.
    Teixeira CRV; Lana RP; Tao J; Hackmann TJ
    FEMS Microbiol Ecol; 2017 Jun; 93(6):. PubMed ID: 28486619
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characteristics of ruminococcus and cellulolytic butyrivibrio species from the rumens of sheep fed differently supplemented teff (Eragrostis tef) hay diets.
    Van Gylswyk NO; Roché CE
    J Gen Microbiol; 1970 Nov; 64(1):11-7. PubMed ID: 5516604
    [No Abstract]   [Full Text] [Related]  

  • 55. Grain-rich diets differently alter ruminal and colonic abundance of microbial populations and lipopolysaccharide in goats.
    Metzler-Zebeli BU; Schmitz-Esser S; Klevenhusen F; Podstatzky-Lichtenstein L; Wagner M; Zebeli Q
    Anaerobe; 2013 Apr; 20():65-73. PubMed ID: 23474085
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition.
    Bi Y; Zeng S; Zhang R; Diao Q; Tu Y
    BMC Microbiol; 2018 Jul; 18(1):69. PubMed ID: 29996759
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH?
    Russell JB; Wilson DB
    J Dairy Sci; 1996 Aug; 79(8):1503-9. PubMed ID: 8880476
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of donor animal species and their feeding on the composition of the microbial community establishing in a rumen simulation.
    Witzig M; Boguhn J; Zeder M; Seifert J; Rodehutscord M
    J Appl Microbiol; 2015 Jul; 119(1):33-46. PubMed ID: 25879255
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Isolation and identification of cellulolytic anaerobic fungi and their associated methanogens from holstein cow].
    Sun M; Jin W; Li Y; Mao S; Cheng Y; Zhu W
    Wei Sheng Wu Xue Bao; 2014 May; 54(5):563-71. PubMed ID: 25199255
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The endogenous polysaccharide utilization rate of mixed ruminal bacteria and the effect of energy starvation on ruminal fermentation rates.
    Van Kessel JS; Russell JB
    J Dairy Sci; 1997 Oct; 80(10):2442-8. PubMed ID: 9361216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.