These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 4622742)

  • 1. Patterns of oxygen interchange between water, substrates, and phosphate compounds of Escherichia coli and Bacillus subtilis.
    Chaney SG; Duffy JJ; Boyer PD
    J Biol Chem; 1972 Apr; 247(7):2145-50. PubMed ID: 4622742
    [No Abstract]   [Full Text] [Related]  

  • 2. Incorporation of water oxygens into intracellular nucleotides and RNA. II. Predominantly hydrolytic RNA turnover in Escherichia coli.
    Chaney SG; Boyer PD
    J Mol Biol; 1972 Mar; 64(3):581-91. PubMed ID: 4553854
    [No Abstract]   [Full Text] [Related]  

  • 3. Incorporation of water oxygens into intracellular nucleotides and RNA. I. Predominantly non-hydrolytic RNA turnover in Bacillus subtilis.
    Duffy JJ; Chaney SG; Boyer PD
    J Mol Biol; 1972 Mar; 64(3):565-79. PubMed ID: 4336697
    [No Abstract]   [Full Text] [Related]  

  • 4. The occurrence of ribothymidine, 1-methyladenosine, methylated guanosines and the corresponding methyltransferases in E. coli and Bacillus subtilis.
    Arnold H; Kersten H
    FEBS Lett; 1973 Oct; 36(1):34-8. PubMed ID: 4201118
    [No Abstract]   [Full Text] [Related]  

  • 5. Exonucleolytic degradation of high-molecular-weight DNA and RNA to nucleoside 3'-phosphates by a nuclease from B. subtilis.
    Kerr IM; Pratt EA; Lehman IR
    Biochem Biophys Res Commun; 1965 Jul; 20(2):154-62. PubMed ID: 4954757
    [No Abstract]   [Full Text] [Related]  

  • 6. Biochemical studies of bacterial sporulation and germination. XX. Phosphate metabolism during germination.
    Nelson DL; Kornberg A
    J Biol Chem; 1970 Mar; 245(5):1146-55. PubMed ID: 4984700
    [No Abstract]   [Full Text] [Related]  

  • 7. Formation of extracellular alpha-amylase by Bacillus subtilis in relation to guanosine polyphosphates.
    Wambutt R; Riesenberg D; Krüger M; Schultze M
    Z Allg Mikrobiol; 1984; 24(8):575-9. PubMed ID: 6438928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenine nucleotide changes associated with the initiation of sporulation in Bacillus subtilis.
    Hutchison KW; Hanson RS
    J Bacteriol; 1974 Jul; 119(1):70-5. PubMed ID: 4209776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the unstable RNA in exponentially growing cultures of Bacillus subtilis and Escherichia coli.
    Salser W; Janin J; Levinthal C
    J Mol Biol; 1968 Jan; 31(2):237-66. PubMed ID: 4965769
    [No Abstract]   [Full Text] [Related]  

  • 10. Turnover of the cell wall of Bacillus subtilis W-23 during logarithmic growth.
    Mauck J; Glaser L
    Biochem Biophys Res Commun; 1970 May; 39(4):699-706. PubMed ID: 4992428
    [No Abstract]   [Full Text] [Related]  

  • 11. The membrane ATPase of Escherichia coli. I. Ion dependence and ATP-ADP exchange reaction.
    Roisin MP; Kepes A
    Biochim Biophys Acta; 1972 Sep; 275(3):333-46. PubMed ID: 4262689
    [No Abstract]   [Full Text] [Related]  

  • 12. Biochemical studies of bacterial sporulation and germination. XIX. Phosphate metabolism during sporulation.
    Nelson DL; Kornberg A
    J Biol Chem; 1970 Mar; 245(5):1137-45. PubMed ID: 4984699
    [No Abstract]   [Full Text] [Related]  

  • 13. Enzymatic basis for hydrolytic versus phosphorolytic mRNA degradation in Escherichia coli and Bacillus subtilis.
    Deutscher MP; Reuven NB
    Proc Natl Acad Sci U S A; 1991 Apr; 88(8):3277-80. PubMed ID: 1707536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative size and properties of the sigma subunits of ribonucleic acid polymerase from Bacillus subtilis and Escherichia coli.
    Shorenstein RG; Losick R
    J Biol Chem; 1973 Sep; 248(17):6170-3. PubMed ID: 4199261
    [No Abstract]   [Full Text] [Related]  

  • 15. Bacillus subtilis DEAD protein YdbR possesses ATPase, RNA binding, and RNA unwinding activities.
    Ando Y; Nakamura K
    Biosci Biotechnol Biochem; 2006 Jul; 70(7):1606-15. PubMed ID: 16861794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action patterns of feedback modifiers on equilibrium exchanges and applications to glutamine synthetase (Escherichia coli W).
    Wedler FC; Boyer PD
    J Biol Chem; 1972 Feb; 247(4):993-1000. PubMed ID: 4400842
    [No Abstract]   [Full Text] [Related]  

  • 17. A mutant of Escherichia coli with a defect in energy metabolism.
    Turnock G; Erickson SK; Ackrell BA; Birch B
    J Gen Microbiol; 1972 May; 70(3):507-15. PubMed ID: 4556255
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture.
    Hempfling WP; Mainzer SE
    J Bacteriol; 1975 Sep; 123(3):1076-87. PubMed ID: 169226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of RNA synthesis in Escherichia coli. I. Amino acid dependence of the synthesis of the substrates of RNA polymerase.
    Cashel M; Gallant J
    J Mol Biol; 1968 Jul; 34(2):317-30. PubMed ID: 4938549
    [No Abstract]   [Full Text] [Related]  

  • 20. Formation of high-energy phosphate bonds effected by electron-deficient sulfides.
    Glass RS; Williams EB; Wilson GS
    Biochemistry; 1974 Jul; 13(14):2800-5. PubMed ID: 4367173
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.