These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 46228)

  • 1. Energy coupling in the uptake of hexose phosphates by Escherichia coli.
    Essenberg RC; Kornberg HL
    J Biol Chem; 1975 Feb; 250(3):939-45. PubMed ID: 46228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on phosphate transport in Escherichia coli. II. Effects of metabolic inhibitors and divalent cations.
    Rae AS; Strickland KP
    Biochim Biophys Acta; 1976 May; 433(3):564-82. PubMed ID: 132192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active transport of biotin in Escherichia coli K-12.
    Prakash O; Eisenberg MA
    J Bacteriol; 1974 Nov; 120(2):785-91. PubMed ID: 4616949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy coupling of the hexose phosphate transport system in Escherichia coli.
    Winkler HH
    J Bacteriol; 1973 Oct; 116(1):203-9. PubMed ID: 4583209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium transport driven by a proton gradient and inverted membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    J Biol Chem; 1976 Feb; 251(4):962-7. PubMed ID: 2608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active transport of manganese in isolated membrane vesicles of Bacillus subtilis.
    Bhattacharyya P
    J Bacteriol; 1975 Jul; 123(1):123-7. PubMed ID: 49350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncoupler and anaerobic resistant transport of phosphate in Escherichia coli.
    Rae AS; Strickland KP
    Biochem Biophys Res Commun; 1975 Feb; 62(3):568-76. PubMed ID: 1091263
    [No Abstract]   [Full Text] [Related]  

  • 8. The association of proton movement with galactose transport into subcellular membrane vesicles of Escherichia coli.
    Horne P; Henderson PJ
    Biochem J; 1983 Mar; 210(3):699-705. PubMed ID: 6307268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate transport in membrane vesicles from Escherichia coli.
    Konings WN; Rosenberg H
    Biochim Biophys Acta; 1978 Apr; 508(2):370-8. PubMed ID: 346064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli.
    Berger EA
    Proc Natl Acad Sci U S A; 1973 May; 70(5):1514-8. PubMed ID: 4268097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics of glycylglycine transport in Escherichia coli.
    Cowell JL
    J Bacteriol; 1974 Oct; 120(1):139-46. PubMed ID: 4278690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncoupler-inhibitor titrations of ATP-driven reverse electron transfer in bovine submitochondrial particles provide evidence for direct interaction between ATPase and NADH:Q oxidoreductase.
    Herweijer MA; Berden JA; Slater EC
    Biochim Biophys Acta; 1986 Apr; 849(2):276-87. PubMed ID: 2421768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in membrane preparations from Escherichia coli.
    Kaback HR; Barnes EM
    J Biol Chem; 1971 Sep; 246(17):5523-31. PubMed ID: 4941946
    [No Abstract]   [Full Text] [Related]  

  • 14. Phosphate transport in Escherichia coli.
    Medveczky N; Rosenberg H
    Biochim Biophys Acta; 1971 Aug; 241(2):494-506. PubMed ID: 4334147
    [No Abstract]   [Full Text] [Related]  

  • 15. The proton electrochemical gradient in Escherichia coli cells.
    Padan E; Zilberstein D; Rottenberg H
    Eur J Biochem; 1976 Apr; 63(2):533-41. PubMed ID: 4325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of metabolic inhibitors on amino acid uptake and the levels of ATP, Na+, and K+ in incubated slices of mouse brain.
    Banay-Schwartz M; Teller DN; Gergely A; Lajtha A
    Brain Res; 1974 May; 71(1):117-31. PubMed ID: 4132385
    [No Abstract]   [Full Text] [Related]  

  • 17. Mechanism of energy coupling for transport of D-ribose in Escherichia coli.
    Curtis SJ
    J Bacteriol; 1974 Oct; 120(1):295-303. PubMed ID: 4278446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of arsenate, phosphate, and aspartate by Sreptococcus faecalis.
    Harold FM; Spitz E
    J Bacteriol; 1975 Apr; 122(1):266-77. PubMed ID: 47322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The active transport of carbohydrates by Escherichia coli.
    Henderson PJ; Kornberg HL
    Ciba Found Symp; 1975; (31):243-69. PubMed ID: 238808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of ferrienterochelin by Escherichia coli: energy dependent stage of uptake.
    Pugsley AP; Reeves P
    J Bacteriol; 1977 Apr; 130(1):26-36. PubMed ID: 140161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.