These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 4622988)

  • 1. Transport systems for organic acids induced in the marine pennate diatom, Cylindrotheca fusiformis.
    Hellebust JA; Lewin J
    Can J Microbiol; 1972 Feb; 18(2):225-33. PubMed ID: 4622988
    [No Abstract]   [Full Text] [Related]  

  • 2. Heterotrophic nutrition of the marine pennate diatom, Cylindrotheca fusiformis.
    Lewin J; Hellebust JA
    Can J Microbiol; 1970 Nov; 16(11):1123-9. PubMed ID: 4321560
    [No Abstract]   [Full Text] [Related]  

  • 3. Transport of dicarboxylic acids in Bacillus subtilis. Inducible uptake of L-malate.
    Fournier RE; McKillen MN; Pardee AB; Willecke K
    J Biol Chem; 1972 Sep; 247(17):5587-95. PubMed ID: 4626722
    [No Abstract]   [Full Text] [Related]  

  • 4. Transport of succinate by Pseudomonas putida.
    Dubler RE; Toscano WA; Hartline RA
    Arch Biochem Biophys; 1974 Feb; 160(2):422-9. PubMed ID: 4831622
    [No Abstract]   [Full Text] [Related]  

  • 5. The inducible transport of DI- and tricarboxylic acid anions across the membrane of Azotobacter vinelandii.
    Postma PW; van Dam K
    Biochim Biophys Acta; 1971 Dec; 249(2):515-27. PubMed ID: 5134194
    [No Abstract]   [Full Text] [Related]  

  • 6. Excretion products of Ochromonas with special reference to pyrrolidone carboxylic acid.
    Jüttner F; Friz R
    Arch Microbiol; 1974 Mar; 96(3):223-32. PubMed ID: 4836312
    [No Abstract]   [Full Text] [Related]  

  • 7. Lactate dehydrogenase from autotrophic and heterotrophic cells of the marine diatom Cylindrotheca fusiformis Reimann & Lewin.
    Darley WM; Smiley RH
    Can J Microbiol; 1976 Oct; 22(10):1502-8. PubMed ID: 184899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crithidia fasciculata: regulation of aerobic fermentation by malic enzyme.
    Marr JJ
    Exp Parasitol; 1973 Jun; 33(3):447-57. PubMed ID: 4146226
    [No Abstract]   [Full Text] [Related]  

  • 9. Dual effects of glucose on dicarboxylic acid transport in Kluyveromyces lactis.
    Zmijewski MJ; MacQuillan AM
    Can J Microbiol; 1975 Apr; 21(4):473-80. PubMed ID: 235357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yolk sac fluid and yolk sac membrane enzymes in the marsupial, Macropus eugenii.
    Renfree MB
    Comp Biochem Physiol B; 1974 Oct; 49(2):273-9. PubMed ID: 4417314
    [No Abstract]   [Full Text] [Related]  

  • 11. Urinary excretion of citric acid cycle metabolites in premature newborn infants with and without a respiratory distress syndrome.
    Wu PY; Oh W; Polar E; Metcoff J
    Pediatrics; 1965 Dec; 36(6):856-60. PubMed ID: 5846827
    [No Abstract]   [Full Text] [Related]  

  • 12. Intracellular distribution of enzymes catalyzing succinate production from glucose in Rangia mantle.
    Chen C; Awapara J
    Comp Biochem Physiol; 1969 Aug; 30(4):727-37. PubMed ID: 4311403
    [No Abstract]   [Full Text] [Related]  

  • 13. Two mutations affecting utilization of C4-dicarboxylic acids by Escherichia coli.
    Herbert AA; Guest JR
    J Gen Microbiol; 1970 Oct; 63(2):151-62. PubMed ID: 4929473
    [No Abstract]   [Full Text] [Related]  

  • 14. Intermediary metabolism in Moniliformis dubius (Acanthocephala).
    Bryant C; Nicholas WL
    Comp Biochem Physiol; 1965 Jun; 15(2):103-12. PubMed ID: 5841604
    [No Abstract]   [Full Text] [Related]  

  • 15. [The importance of citric acid and other acids of the tricarboxylic acid cycle for the growth and the pigment production of the unicellular alga Poteriochromonas stipiata].
    Dörfling P; Dummler W; Mücke D
    Z Allg Mikrobiol; 1971; 11(2):163-7. PubMed ID: 5563614
    [No Abstract]   [Full Text] [Related]  

  • 16. The pattern of utilization of respiratory metabolic intermediates by preimplantation rabbit embryos in vitro.
    Daniel JC
    Exp Cell Res; 1967 Sep; 47(3):619-24. PubMed ID: 6054032
    [No Abstract]   [Full Text] [Related]  

  • 17. The pathway of glucose degradation in some invertebrates.
    Simpson JW; Awapara J
    Comp Biochem Physiol; 1966 Jul; 18(3):537-48. PubMed ID: 5967681
    [No Abstract]   [Full Text] [Related]  

  • 18. [Energy metabolism and serum enzymes].
    Kröner H; Staib W
    Z Klin Chem Klin Biochem; 1967 Mar; 5(2):89-92. PubMed ID: 5605217
    [No Abstract]   [Full Text] [Related]  

  • 19. Beta-galactoside transport in bacterial membrane preparations: energy coupling via membrane-bounded D-lactic dehydrogenase.
    Barnes EM; Kaback HR
    Proc Natl Acad Sci U S A; 1970 Aug; 66(4):1190-8. PubMed ID: 4394455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Malate transport in bovine adrenal cortex mitochondria.
    Launay AN; Michejda JW; Vignais PV
    Biochim Biophys Acta; 1974 Apr; 347(1):60-76. PubMed ID: 4433559
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.