These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 4623127)

  • 1. Mechanisms of active transport in isolated membrane vesicles. IV. Galactose transport by isolated membrane vesicles from Escherichia coli.
    Kerwar GK; Gordon AS; Kaback HR
    J Biol Chem; 1972 Jan; 247(1):291-7. PubMed ID: 4623127
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli.
    Lombardi FJ; Kaback HR
    J Biol Chem; 1972 Dec; 247(24):7844-57. PubMed ID: 4344983
    [No Abstract]   [Full Text] [Related]  

  • 3. Active transport in isolated bacterial membrane vesicles. V. The transport of amino acids by membrane vesicles prepared from Staphylococcus aureus.
    Short SA; White DC; Kaback HR
    J Biol Chem; 1972 Jan; 247(1):298-304. PubMed ID: 4553437
    [No Abstract]   [Full Text] [Related]  

  • 4. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. Valinomycin-induced rubidium transport.
    Lombardi FJ; Reeves JP; Kaback HR
    J Biol Chem; 1973 May; 248(10):3551-65. PubMed ID: 4573982
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids.
    Konings WN; Barnes EM; Kaback HR
    J Biol Chem; 1971 Oct; 246(19):5857-61. PubMed ID: 4331061
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanisms of active transport in isolated bacterial membrane vesicles. X. Inactivation of D-lactate dehydrogenase and D-lactate dehydrogenase-coupled transport in Escherichia coli membrane vesicles by an acetylenic substrate.
    Walsh CT; Abeles RH; Kaback HR
    J Biol Chem; 1972 Dec; 247(24):7858-63. PubMed ID: 4565667
    [No Abstract]   [Full Text] [Related]  

  • 7. Active transport in bacterial cytoplasmic membrane vesicles.
    Kaback HR
    Symp Soc Exp Biol; 1973; 27():145-74. PubMed ID: 4594375
    [No Abstract]   [Full Text] [Related]  

  • 8. Transport of lactate and succinate by membrane vesicles of Escherichia coli, Bacillus subtilis and a pseudomonas species.
    Matin A; Konings WN
    Eur J Biochem; 1973 Apr; 34(1):58-67. PubMed ID: 4349657
    [No Abstract]   [Full Text] [Related]  

  • 9. Transient pH changes during D-lactate oxidation by membrane vesicles.
    Reeves JP
    Biochem Biophys Res Commun; 1971 Nov; 45(4):931-6. PubMed ID: 4330145
    [No Abstract]   [Full Text] [Related]  

  • 10. Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in membrane preparations from Escherichia coli.
    Kaback HR; Barnes EM
    J Biol Chem; 1971 Sep; 246(17):5523-31. PubMed ID: 4941946
    [No Abstract]   [Full Text] [Related]  

  • 11. Energy coupling of the -methylgalactoside transport system of Escherichia coli.
    Parnes JR; Boos W
    J Biol Chem; 1973 Jun; 248(12):4429-35. PubMed ID: 4268122
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles.
    Barnes EM; Kaback HR
    J Biol Chem; 1971 Sep; 246(17):5518-22. PubMed ID: 4330922
    [No Abstract]   [Full Text] [Related]  

  • 13. Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli.
    Reeves JP; Hong JS; Kaback HR
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):1917-21. PubMed ID: 4579004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The galactose binding protein and its relationship to the beta-methylgalactoside permease from Escherichia coli.
    Boos W
    Eur J Biochem; 1969 Aug; 10(1):66-73. PubMed ID: 4981309
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanisms of active transport in isolated bacterial membrane vesicles. XV. Purification and properties of the membrane-bound D-lactate dehydrogenase from Escherichia coli.
    Kohn LD; Kaback HR
    J Biol Chem; 1973 Oct; 248(20):7012-7. PubMed ID: 4582730
    [No Abstract]   [Full Text] [Related]  

  • 16. Reconstitution of transport dependent on D-lactate or glycerol 3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases.
    Futai M
    Biochemistry; 1974 May; 13(11):2327-33. PubMed ID: 4598623
    [No Abstract]   [Full Text] [Related]  

  • 17. Coupling of energy to active transport of amino acids in Escherichia coli.
    Simoni RD; Shallenberger MK
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2663-7. PubMed ID: 4341704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine uptake by isolated membrane vesicles from Escherichia coli K-12.
    Komatsu Y
    Biochim Biophys Acta; 1973 Dec; 330(2):206-21. PubMed ID: 4591127
    [No Abstract]   [Full Text] [Related]  

  • 19. Determination of the absolute number of Escherichia coli membrane vesicles that catalyze active transport.
    Short SA; Kaback HR; Kaczorowski G; Fisher J; Walsh CT; Silverstein SC
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5032-6. PubMed ID: 4612538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of active transport in isolated bacterial membrane vesicles. XII. Active transport by a mutant of Escherichia coli uncoupled for oxidative phosphorylation.
    Prezioso G; Hong JS; Kerwar GK; Kaback HR
    Arch Biochem Biophys; 1973 Feb; 154(2):575-82. PubMed ID: 4266260
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.