These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 4623226)

  • 101. The molecular biology of Euglena gracilis. VII. Inorganic requirements for a minimal culture medium.
    Kempner ES; Miller JH
    J Protozool; 1972 May; 19(2):343-6. PubMed ID: 4624303
    [No Abstract]   [Full Text] [Related]  

  • 102. Growth and cell volume of Euglena gracilis in different media.
    Shehata TE; Kempner ES
    Appl Environ Microbiol; 1977 Apr; 33(4):874-7. PubMed ID: 405924
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Study of the behavior of Euglena viridis, Euglena gracilis and Lepadella patella cultured in all-glass microaquarium.
    Podwin A; Kubicki W; Dziuban JA
    Biomed Microdevices; 2017 Sep; 19(3):63. PubMed ID: 28688071
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Mercury uptake and removal by Euglena gracilis.
    Devars S; Avilés C; Cervantes C; Moreno-Sánchez R
    Arch Microbiol; 2000 Sep; 174(3):175-80. PubMed ID: 11041348
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Response to heavy metals in organisms-I. Excretion and accumulation of physiological and non physiological metals in Euglena gracilis.
    Albergoni V; Piccinni E; Coppellotti O
    Comp Biochem Physiol C Comp Pharmacol; 1980; 67C(2):121-7. PubMed ID: 6108179
    [No Abstract]   [Full Text] [Related]  

  • 106. Metabolism of odd-numbered fatty acids in Ochromonas danica.
    Gellerman JL; Schlenk H
    Lipids; 1972 Jan; 7(1):51-5. PubMed ID: 5013172
    [No Abstract]   [Full Text] [Related]  

  • 107. The molecular biology of Euglena gracilis. 8. Glycitols and monosaccharides.
    Kempner ES; Miller JH
    J Protozool; 1972 Nov; 19(4):678-81. PubMed ID: 4629842
    [No Abstract]   [Full Text] [Related]  

  • 108. Use of a microbial model for the determination of drug effects on cell metabolism and energetics: study of citrulline-malate.
    Briand J; Blehaut H; Calvayrac R; Laval-Martin D
    Biopharm Drug Dispos; 1992 Jan; 13(1):1-22. PubMed ID: 1554874
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Effects of a first exposure to ethanol on the compositions of neutral and polar lipids in Euglena gracilis Z, taken as a hepatic cell model: equilibration by citrulline-malate.
    Thuillier-Bruston F; Briand J; Laval-Martin D
    Biochem Med Metab Biol; 1990 Oct; 44(2):159-74. PubMed ID: 2252617
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Phallotoxin-visualization of F-actin in normal and chromium-poisoned Euglena cells.
    Bassi M; Donini A
    Cell Biol Int Rep; 1984 Oct; 8(10):867-71. PubMed ID: 6439420
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Modification of amino acid and sugar transport in uncoupler-adapted Euglena gracilis.
    Kahn JS; McConnell RT
    J Bioenerg Biomembr; 1977 Dec; 9(6):363-72. PubMed ID: 18265746
    [TBL] [Abstract][Full Text] [Related]  

  • 112. The fatty acids of Euglena gracilis.
    Korn ED
    J Lipid Res; 1964 Jul; 5(3):352-62. PubMed ID: 5873372
    [No Abstract]   [Full Text] [Related]  

  • 113. Influence of Carbon Sources on the Phenolic Compound Production by
    Bernard E; Guéguen C
    Biomolecules; 2022 Jun; 12(6):. PubMed ID: 35740922
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Compartmentation of uracil in Euglena gracilis.
    Wasternack CH
    Mol Cell Biol; 1983 Apr; 3(4):613-22. PubMed ID: 6406837
    [TBL] [Abstract][Full Text] [Related]  

  • 115. The effect of potassium iodide on photophobic responses in Euglena: evidence for two photoreceptor pigments.
    Mikolajczyk E; Diehn B
    Photochem Photobiol; 1975 Dec; 22(6):269-71. PubMed ID: 814554
    [No Abstract]   [Full Text] [Related]  

  • 116. The effect of biotin deficiency on the biosynthesis of the fatty acids in a blowfly, Aldrichina grahami during metamorphosis under aseptic conditions.
    Miura K; Takaya T; Koshiba K
    Arch Int Physiol Biochim; 1967 Feb; 75(1):65-76. PubMed ID: 4168930
    [No Abstract]   [Full Text] [Related]  

  • 117. Evaluation of
    Chen Z; Chen Y; Zhang H; Qin H; He J; Zheng Z; Zhao L; Lei A; Wang J
    Front Bioeng Biotechnol; 2022; 10():827513. PubMed ID: 35402390
    [No Abstract]   [Full Text] [Related]  

  • 118. Effects of changes in the major carbon source on the fatty acids of Euglena gracilis.
    Reitz RC; Moore GS
    Lipids; 1972 Mar; 7(3):217-20. PubMed ID: 4623226
    [No Abstract]   [Full Text] [Related]  

  • 119. Control of fatty acid and lipid biosynthesis in Euglena gracilis by ammonia, light and DCMU.
    Pohl P; Wagner H
    Z Naturforsch B Anorg Chem Org Chem Biochem Biophys Biol; 1972 Jan; 27(1):53-61. PubMed ID: 4401899
    [No Abstract]   [Full Text] [Related]  

  • 120.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.