These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 4623444)

  • 1. The effects of dietary alterations on 3-methyl-4-methylaminoazobenzene N-demethylase activity.
    Billings RE; Wattenberg LW
    Proc Soc Exp Biol Med; 1972 Mar; 139(3):865-7. PubMed ID: 4623444
    [No Abstract]   [Full Text] [Related]  

  • 2. Induction of drug metabolism. IV. Relative abilities of polycyclic hydrocarbons to increase levels of microsomal 3-methyl-4-methylaminoazobenzene N-demethylase activity and cytochrome P1-450.
    Parli CJ; Mannering GJ
    Mol Pharmacol; 1970 Mar; 6(2):178-83. PubMed ID: 4190664
    [No Abstract]   [Full Text] [Related]  

  • 3. Hepatic and extrahepatic induction of drug-metabolizing enzymes in specific pathogen free and germ free rats.
    Hietanen E; Pelkonen K
    Gen Pharmacol; 1979; 10(3):239-47. PubMed ID: 157313
    [No Abstract]   [Full Text] [Related]  

  • 4. Species differences in stimulation of intestinal and hepatic microsomal mixed-function oxidase enzymes.
    Miranda CL; Chhabra RS
    Biochem Pharmacol; 1980 Apr; 29(8):1161-5. PubMed ID: 7387731
    [No Abstract]   [Full Text] [Related]  

  • 5. Induction deficiency of the microsomal UDPglucuronosyltransferase by 3-methylcholanthrene in Gunn rats.
    Vainio H; Hietanen E
    Biochim Biophys Acta; 1974 Aug; 362(1):92-9. PubMed ID: 4213730
    [No Abstract]   [Full Text] [Related]  

  • 6. Induction of monooxygenase activity in the intestine of spot (Leiostomus xanthurus), a marine teleost, by dietary polycyclic aromatic hydrocarbons.
    van Veld PA; Stegeman JJ; Woodin BR; Patton JS; Lee RF
    Drug Metab Dispos; 1988; 16(5):659-65. PubMed ID: 2906586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid induction and carbohydrate repression of dimethylnitrosamine demethylase in rat liver.
    Venkatesan N; Arcos JC; Argus MF
    Cancer Res; 1970 Oct; 30(10):2563-7. PubMed ID: 5474179
    [No Abstract]   [Full Text] [Related]  

  • 8. Differences between small and large intestine and liver in the inducibility of microsomal enzymes in response to stimulation by phenobarbitone and betanaphthoflavone in the diet.
    McDanell RE; McLean AE
    Biochem Pharmacol; 1984 Jun; 33(12):1977-80. PubMed ID: 6610422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the 3-methylcholanthrene induction and carbohydrate repression of rat liver dimethylaminoazobenzene reductase.
    Jervell KF; Christoffersen T; Mörland J
    Arch Biochem Biophys; 1965 Jul; 111(1):15-22. PubMed ID: 4954843
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of dietary phenobarbital, 3,4-benzo(alpha)pyrene and 3-methylcholanthrene on hepatic, intestinal and renal glutathione s-transferase activities in the rat.
    Clifton G; Kaplowitz N
    Biochem Pharmacol; 1978; 27(8):1284-7. PubMed ID: 697926
    [No Abstract]   [Full Text] [Related]  

  • 11. Different elimination and effect on mixed function oxidase of 20-methyl-cholanthrene after intragastric and intraperitoneal administration.
    Aitio A
    Res Commun Chem Pathol Pharmacol; 1974 Dec; 9(4):701-10. PubMed ID: 4456502
    [No Abstract]   [Full Text] [Related]  

  • 12. Microsomal N-demethylase activity in developing rat liver after administration of 3-methylcholanthrene.
    Bresnick E; Stevenson JG
    Biochem Pharmacol; 1968 Sep; 17(9):1815-22. PubMed ID: 5688269
    [No Abstract]   [Full Text] [Related]  

  • 13. Induction of hepatic mixed function oxidases in senescent rodents.
    Birnbaum LS; Baird MB
    Exp Gerontol; 1978; 13(5):299-303. PubMed ID: 104880
    [No Abstract]   [Full Text] [Related]  

  • 14. Properties of benzpyrene hydroxylase in the liver, intestinal mucosa and adrenal of untreated and 3-methylcholanthrene-treated rats.
    Zampaglione NG; Mannering GJ
    J Pharmacol Exp Ther; 1973 Jun; 185(3):676-85. PubMed ID: 4712656
    [No Abstract]   [Full Text] [Related]  

  • 15. Induction of intestinal microsomal enzymes by polycyclic aromatic hydrocarbons.
    Hassing JM; al-Turk WA; Stohs SJ
    Gen Pharmacol; 1989; 20(5):695-700. PubMed ID: 2481604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparative characteristics of microsomal epoxide hydrolase in the rat liver and small intestine mucosa].
    Kravchenko LV; Kuz'mina EE; Sobolev VS
    Vopr Med Khim; 1988; 34(6):122-8. PubMed ID: 3238935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of 3,4-benzpyrene, 3-methylcholanthrene, chlordane, and methyltestosterone as stimulators of hepatic microsomal enzyme systems in the rat.
    Mullen JO; Juchau MR; Fouts JR
    Biochem Pharmacol; 1966 Feb; 15(2):137-44. PubMed ID: 4380232
    [No Abstract]   [Full Text] [Related]  

  • 18. Intestinal microsomal enzyme induction by rifampicin.
    Hegazy I; Khayyal M
    Chemioterapia; 1987 Jun; 6(2 Suppl):325-7. PubMed ID: 3509435
    [No Abstract]   [Full Text] [Related]  

  • 19. Detection of carcinogen-induced stimulation of cytochrome P-448-associated enzymes by 14CO2 breath analysis studies using dimethylaminoazobenzene.
    Hepner GW; Piken EP
    Gastroenterology; 1979 Feb; 76(2):267-71. PubMed ID: 103777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NAD(P)-linked aromatic aldehydes preferring cytoplasmic aldehyde dehydrogenases in the rat. Constitutive and inducible forms in liver, lung, stomach and intestinal mucosa.
    Koivusalo M; Aarnio M; Baumann M; Rautoma P
    Prog Clin Biol Res; 1989; 290():19-33. PubMed ID: 2726818
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.