These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 4623624)
1. A phospholipase in Bacillus megaterium unique to spores and sporangia. Raybin DM; Bertsch LL; Kornberg A Biochemistry; 1972 May; 11(10):1754-60. PubMed ID: 4623624 [No Abstract] [Full Text] [Related]
2. Purification of N-acetylmuramic acid-L-alanine amidase from Bacillus megaterium. Chan L; Glaser L J Biol Chem; 1972 Sep; 247(17):5391-7. PubMed ID: 4626719 [No Abstract] [Full Text] [Related]
3. Regulation of the formation of proteinases in Bacillus megaterium. VI. Some physicochemical properties of the proteinases from sporogenic and asporogenic Bacillus megaterium KM. Chan NH; Chaloupka J Folia Microbiol (Praha); 1972; 17(5):347-52. PubMed ID: 4627856 [No Abstract] [Full Text] [Related]
4. Alternative purification of the membrane-bound ATPase from Bacillus megaterium KM, and some properties. Mirsky R; Barlow V Biochim Biophys Acta; 1972 Aug; 274(2):556-62. PubMed ID: 4261812 [No Abstract] [Full Text] [Related]
5. Biochemical studies of bacterial sporulation. IV. Inorganic pyrophosphatase of vegetative cells and spores of Bacillus megaterium. Tono H; Kornberg A J Bacteriol; 1967 Jun; 93(6):1819-24. PubMed ID: 4960894 [TBL] [Abstract][Full Text] [Related]
6. Minimal requirements for commitment to sporulation in Bacillus megaterium. Greene RA; Slepecky RA J Bacteriol; 1972 Aug; 111(2):557-65. PubMed ID: 4626503 [TBL] [Abstract][Full Text] [Related]
7. Biochemical studies of bacterial sporulation and germination. IX. Ribonucleic acid and deoxyribonucleic acid polymerases in nuclear fractions of vegetative cells and spores of Bacillus megaterium. Chambon P; DuPraw EJ; Kornberg A J Biol Chem; 1968 Oct; 243(19):5101-9. PubMed ID: 4971347 [No Abstract] [Full Text] [Related]
8. Germination of Bacillus megaterium spores after various extraction procedures. Vary JC J Bacteriol; 1973 Nov; 116(2):797-802. PubMed ID: 4200857 [TBL] [Abstract][Full Text] [Related]
9. Effects of culture conditions on the size, morphology and wet density of spores of Bacillus cereus 569 and Bacillus megaterium QM B1551. Xu Zhou K; Wisnivesky F; Wilson DI; Christie G Lett Appl Microbiol; 2017 Jul; 65(1):50-56. PubMed ID: 28419596 [TBL] [Abstract][Full Text] [Related]
10. Evidence for phospholipid in plasma membrane penicillinase of Bacillus licheniformis 749-C. Sawai T; Crane LJ; Lampen JO Biochem Biophys Res Commun; 1973 Jul; 53(2):523-30. PubMed ID: 4716986 [No Abstract] [Full Text] [Related]
11. A membrane-bound phospholipase A1 purified from Escherichia coli. Scandella CJ; Kornberg A Biochemistry; 1971 Nov; 10(24):4447-56. PubMed ID: 4946924 [No Abstract] [Full Text] [Related]
12. Activation energy for glucose-induced germination of Bacillus megaterium spores. Levinson HS; Hyatt MT J Bacteriol; 1970 Jul; 103(1):269-70. PubMed ID: 4987307 [TBL] [Abstract][Full Text] [Related]
13. [Sporulation behavior of Bacillus megaterium during carbohydrate starvation]. Kretschmer S Z Allg Mikrobiol; 1971; 11(2):113-20. PubMed ID: 4998214 [No Abstract] [Full Text] [Related]
14. Biochemical studies of bacterial sporulation and germination. XIV. Phospholipids in Bacillus megaterium. Bertsch LL; Bonsen PP; Kornberg A J Bacteriol; 1969 Apr; 98(1):75-81. PubMed ID: 4977691 [TBL] [Abstract][Full Text] [Related]
15. 4HPyran-2,6-dicarboxylate as a substitute for dipicolinate in the spolation of Bacillus megaterium. Fukuda A; Gilvarg G; Lewis JC J Biol Chem; 1969 Oct; 244(20):5636-43. PubMed ID: 4981583 [No Abstract] [Full Text] [Related]
16. Mechanism of killing of spores of Bacillus cereus and Bacillus megaterium by wet heat. Coleman WH; Zhang P; Li YQ; Setlow P Lett Appl Microbiol; 2010 May; 50(5):507-14. PubMed ID: 20302598 [TBL] [Abstract][Full Text] [Related]
17. Regulation of the formation of proteinases in Bacillus megaterium. V. Characterization of two megaterioproteinases differing in the control of their synthesis. Chan NH; Chaloupka J Folia Microbiol (Praha); 1972; 17(4):281-90. PubMed ID: 4627015 [No Abstract] [Full Text] [Related]
18. Role of glutamine synthetase in the repression of bacterial sporulation. Elmerich C; Aubert JP Biochem Biophys Res Commun; 1972 Jan; 46(2):892-7. PubMed ID: 4400446 [No Abstract] [Full Text] [Related]
19. Two kinds of phospholipase A and lysophospholipase in Escherichia coli. Doi O; Oki M; Nojima S Biochim Biophys Acta; 1972 Feb; 260(2):244-58. PubMed ID: 4552055 [No Abstract] [Full Text] [Related]
20. Role of carbon and nitrogen sources in bacterial growth and sporulation. Singh RM Appl Microbiol; 1971 Jul; 22(1):131-2. PubMed ID: 4999972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]