These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 4625825)

  • 21. P430, a possible primary electron acceptor in Rhodospirillum rubrum.
    Silberstein BR; Gromet-Elhanan Z
    FEBS Lett; 1974 Jun; 42(2):141-4. PubMed ID: 4369098
    [No Abstract]   [Full Text] [Related]  

  • 22. Pigment-protein complexes derived from Rhondospirillum rubrum chromatophores by enzymatic digestion.
    Vernon LP; Garcia AF
    Biochim Biophys Acta; 1967 Jul; 143(1):144-53. PubMed ID: 6048851
    [No Abstract]   [Full Text] [Related]  

  • 23. [Membrane potential in the chromatophores of Rhodospirillum rubrum conditioned by a transhydrogenase reaction].
    Ostroumov SA; Samuilov VD; Skulachev VP
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1974; 2():92-5. PubMed ID: 4150987
    [No Abstract]   [Full Text] [Related]  

  • 24. An immunological and electrophoretic study of Rhodospirillum rubrum chromatophore fragments.
    van der Rest M; Noël H; Gingras G
    Arch Biochem Biophys; 1974 Sep; 164(1):285-92. PubMed ID: 4215370
    [No Abstract]   [Full Text] [Related]  

  • 25. The light-harvesting polypeptides of Rhodospirillum rubrum. I. The amino-acid sequence of the second light-harvestng polypeptide B 880-beta (B 870-beta) of Rhodospirillum rubrum S 1 and the carotenoidless mutant G-9+. carotenoidless mutant G-9+.
    Brunisholz RA; Suter F; Zuber H
    Hoppe Seylers Z Physiol Chem; 1984 Jul; 365(7):675-88. PubMed ID: 6434396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of 2-hydroxybiphenyl on membranes of Rhodospirillum rubrum.
    Maudinas B; Oelze J; Villoutreix J; Reisinger O
    Arch Mikrobiol; 1973 Nov; 93(3):219-28. PubMed ID: 4130016
    [No Abstract]   [Full Text] [Related]  

  • 27. Isolation and composition of a photosynthetic reaction center complex from Rhodopseudomonas spheroides.
    Reed DW
    J Biol Chem; 1969 Sep; 244(18):4936-41. PubMed ID: 5824569
    [No Abstract]   [Full Text] [Related]  

  • 28. Comparative study of the circular dichroism spectra of reaction centers from several photosynthetic bacteria.
    Philipson KD; Sauer K
    Biochemistry; 1973 Jan; 12(3):535-9. PubMed ID: 4630407
    [No Abstract]   [Full Text] [Related]  

  • 29. Transhydrogenase-induced responses of carotenoids, bacteriochlorophyll and penetrating anions in Rhodospirillum rubrum chromatophores.
    Ostroumov SA; Samuilov VD; Skulachev VP
    FEBS Lett; 1973 Apr; 31(1):27-30. PubMed ID: 4145457
    [No Abstract]   [Full Text] [Related]  

  • 30. Kinetics of the fluorescence change and P8 70 bleaching in chromatophores from Rhodospirillum rubrum.
    Malkin S; Silberstein B
    Biochim Biophys Acta; 1972 Sep; 275(3):369-82. PubMed ID: 4627084
    [No Abstract]   [Full Text] [Related]  

  • 31. Properties of the F0F1 ATPase complex from Rhodospirillum rubrum chromatophores, solubilized by Triton X-100.
    Schneider E; Müller HW; Rittinghaus K; Thiele V; Schwuléra U; Dose K
    Eur J Biochem; 1979 Jul; 97(2):511-7. PubMed ID: 157277
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative dissolution of the membrane and preparation of photoreceptor subunits from Rhodospirillum rubrum.
    Loach PA; Hadsell RM; Sekura DL; Stemer A
    Biochemistry; 1970 Aug; 9(16):3127-35. PubMed ID: 4321367
    [No Abstract]   [Full Text] [Related]  

  • 33. Disintegration of Rhodospirillum rubrum chromatophore membrane into photoreaction units, reaction centers, and ubiquinone-10 protein with mixture of cholate and deoxycholate.
    Nishi N; Kataoka M; Soe G; Kakuno T; Ueki T; Yamashita J; Horio T
    J Biochem; 1979 Nov; 86(5):1211-34. PubMed ID: 118165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membranes of Rhodospirillum rubrum: physicochemical properties of chromatophore fractions isolated from osmotically and mechanically disrupted cells.
    Collins ML; Niederman RA
    J Bacteriol; 1976 Jun; 126(3):1326-38. PubMed ID: 820690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photochemical activities of K3Fe(CN)6-treated chromatophores from Rhodospirillum rubrum.
    Beugeling T
    Biochim Biophys Acta; 1968 Jan; 153(1):143-53. PubMed ID: 5638384
    [No Abstract]   [Full Text] [Related]  

  • 36. Properties of Rhodospirillum rubrum subchromatophore particles obtained by treatment with Triton X-100.
    Garcia A; Vernon LP; Mollenhauer H
    Biochemistry; 1966 Jul; 5(7):2408-16. PubMed ID: 4289584
    [No Abstract]   [Full Text] [Related]  

  • 37. Temperature dependence of absorption and fluorescence spectra of bacteriochlorophylls in vivo and in vitro.
    Goedheer JC
    Biochim Biophys Acta; 1972 Aug; 275(2):169-76. PubMed ID: 4627554
    [No Abstract]   [Full Text] [Related]  

  • 38. The interaction of the free radical of 5-methylphenazinium methyl sulfate with the light-induced free radical of Rhodospirillum rubrum chromatophores.
    Cost K; Bolton JR; Frenkel AW
    Proc Natl Acad Sci U S A; 1967 Apr; 57(4):868-75. PubMed ID: 4291921
    [No Abstract]   [Full Text] [Related]  

  • 39. [Formation of different forms of hydrogenases in Rhodospirillum rubrum depending on the growing conditions].
    Gogotov IN; Zorin NA; Ushakov VM
    Mikrobiologiia; 1973; 42(1):21-5. PubMed ID: 4208935
    [No Abstract]   [Full Text] [Related]  

  • 40. Light-influenced ATPase activity: bacterial.
    Horio T; Horiuti Y; Yamamoto N; Nishikawa K
    Methods Enzymol; 1972; 24():96-103. PubMed ID: 4274342
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.