These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 4626639)

  • 21. Direct incorporation of guanosine 5'-diphosphate into microtubules without guanosine 5'-triphosphate hydrolysis.
    Hamel E; Batra JK; Lin CM
    Biochemistry; 1986 Nov; 25(22):7054-62. PubMed ID: 3026443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions of myo-inositol with brain microtubules.
    Kirazov EP; Lagnado JR
    FEBS Lett; 1977 Sep; 81(1):173-8. PubMed ID: 902771
    [No Abstract]   [Full Text] [Related]  

  • 23. Binding of microtubules to pituitary secretory granules and secretory granule membranes.
    Sherline P; Lee YC; Jacobs LS
    J Cell Biol; 1977 Feb; 72(2):380-9. PubMed ID: 833201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studies on the two phosphoenzyme conformations of Na+ plus K+-ATPase.
    Tobin T; Akera T; Brody TM
    Ann N Y Acad Sci; 1974; 242(0):120-32. PubMed ID: 4279582
    [No Abstract]   [Full Text] [Related]  

  • 25. Nucleotide dependence of successive cycles of tubulin assembly.
    Selkoe DJ
    Brain Res; 1979 Aug; 172(2):382-6. PubMed ID: 466483
    [No Abstract]   [Full Text] [Related]  

  • 26. Regulation of the microtubule-lysosome interaction: activation by Mg2+ and inhibition by ATP.
    Mithieux G; Rousset B
    Biochim Biophys Acta; 1988 Aug; 971(1):29-37. PubMed ID: 3136805
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microtubule elongation and guanosine 5'-triphosphate hydrolysis. Role of guanine nucleotides in microtubule dynamics.
    Carlier MF; Didry D; Pantaloni D
    Biochemistry; 1987 Jul; 26(14):4428-37. PubMed ID: 3663597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ascorbic acid-like effect of the soluble fraction of rat brain on adenosine triphosphatases and its relation to catecholamines and chelating agents.
    Schaefer A; Seregi A; Komlós M
    Biochem Pharmacol; 1974 Aug; 23(16):2257-71. PubMed ID: 4368431
    [No Abstract]   [Full Text] [Related]  

  • 29. Magnesium requirements for guanosine 5'-O-(3-thiotriphosphate) induced assembly of microtubule protein and tubulin.
    Roychowdhury S; Gaskin F
    Biochemistry; 1986 Dec; 25(24):7847-53. PubMed ID: 3542038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of chelating agents on collagen interfibrillar matrix interactions in connective tissue.
    Steven FS
    Biochim Biophys Acta; 1967 Aug; 140(3):522-8. PubMed ID: 4963601
    [No Abstract]   [Full Text] [Related]  

  • 31. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength.
    Bradshaw PC; Pfeiffer DR
    BMC Biochem; 2006 Feb; 7():4. PubMed ID: 16460565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polewards chromosome movement driven by microtubule depolymerization in vitro.
    Koshland DE; Mitchison TJ; Kirschner MW
    Nature; 1988 Feb; 331(6156):499-504. PubMed ID: 3340202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The in vitro polymerization of tubulin from beef brain.
    Lee YC; Samson FE; Houston LL; Himes RH
    J Neurobiol; 1974; 5(4):317-30. PubMed ID: 4448989
    [No Abstract]   [Full Text] [Related]  

  • 34. Pressure-induced depolymerization of brain microtubules in vitro.
    Salmon ED
    Science; 1975 Sep; 189(4206):884-6. PubMed ID: 1171523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-scattering studies on rabbit brain microsomes. II. Efects of ATP and chelation of Mg2+ on microsomal contraction.
    Kamino K
    Biochim Biophys Acta; 1969 Jun; 183(1):48-57. PubMed ID: 4978350
    [No Abstract]   [Full Text] [Related]  

  • 36. Differential effects of magnesium on tubulin-nucleotide interactions.
    Huang AB; Lin CM; Hamel E
    Biochim Biophys Acta; 1985 Nov; 832(1):22-32. PubMed ID: 3931683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of guanine nucleotides on the assembly of brain microtubles: ability of 5'-guanylyl imidodiphosphate to replace GTB in promoting the polymerization of microtubules in vitro.
    Arai T; Kaziro Y
    Biochem Biophys Res Commun; 1976 Mar; 69(2):369-76. PubMed ID: 131550
    [No Abstract]   [Full Text] [Related]  

  • 38. The effect of EDTA on the electrical activity of rat jejunum.
    Hardcastle PT; Eggenton J
    Biochim Biophys Acta; 1971 Sep; 241(3):930-3. PubMed ID: 5003697
    [No Abstract]   [Full Text] [Related]  

  • 39. Glutamate, calcium ion-chelating agents and the sodium and potassium ion contents of tissues from the brain.
    Pull I; McIlwain H; Ramsay RL
    Biochem J; 1970 Jan; 116(2):181-7. PubMed ID: 4984164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of rat brain crude extract microtubule assembly: correlation of cold stability with the phosphorylation state of a microtubule-associated 64K protein.
    Margolis RL; Rauch CT
    Biochemistry; 1981 Jul; 20(15):4451-8. PubMed ID: 7284335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.