These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 4627083)
41. Kinetics and stoichiometry of proton binding in Phodopseudomonas sphaeroides chromatophores. Petty KM; Jackson JB; Dutton PL FEBS Lett; 1977 Dec; 84(2):299-303. PubMed ID: 23313 [No Abstract] [Full Text] [Related]
42. Roles of ubiquinone-10 and rhodoquinone in photosynthetic formation of adenosine triphosphate by chromatophores from Rhodospirillum rubrum. Okayama S; Yamamoto N; Nishikawa K; Horio T J Biol Chem; 1968 Jun; 243(11):2995-9. PubMed ID: 5653187 [No Abstract] [Full Text] [Related]
43. The primary acceptor of bacterial photosynthesis: its operating midpoint potential? Prince RC; Dutton PL Arch Biochem Biophys; 1976 Feb; 172(2):329-34. PubMed ID: 4013 [No Abstract] [Full Text] [Related]
44. [ON THE MORPHOGENESIS OF BACTERIAL "CHROMATOPHORES" (THYLAKOIDS) AND ON THE SYNTHESIS OF BACTERIOCHLOROPHYLL IN RHODOPSEUDOMONAS SPHEROIDES AND RHODOSPIRILLUM RUBRUM]. DREWS G; GIESBRECHT P Zentralbl Bakteriol Orig; 1963 Dec; 190():508-35. PubMed ID: 14166428 [No Abstract] [Full Text] [Related]
45. Flash-induced changes in the in vivo bacteriochlorophyll fluorescence yield at low temperatures and low redox potentials in carotenoid-containing strains of photosynthetic bacteria. Holmes NG; van Grondelle R; Duysens LN Biochim Biophys Acta; 1978 Jul; 503(1):26-36. PubMed ID: 96856 [TBL] [Abstract][Full Text] [Related]
46. The mechanism of reduction of the ubiquinone pool in photosynthetic bacteria at different redox potentials. de Grooth BG; van Grondelle R; Romijn JC; Pulles MP Biochim Biophys Acta; 1978 Sep; 503(3):480-90. PubMed ID: 99172 [TBL] [Abstract][Full Text] [Related]
47. P430, a possible primary electron acceptor in Rhodospirillum rubrum. Silberstein BR; Gromet-Elhanan Z FEBS Lett; 1974 Jun; 42(2):141-4. PubMed ID: 4369098 [No Abstract] [Full Text] [Related]
48. Dependency on environmental redox potential of photophosphorylation in Rhodopseudomonas spheroides. Culbert-Runquist JA; Hadsell RM; Loach PA Biochemistry; 1973 Aug; 12(18):3508-14. PubMed ID: 4542403 [No Abstract] [Full Text] [Related]
49. [Interaction of redox mediators with chromatophores of the photosynthetic bacterium Rhodospirillum rubrum]. Sled' VD; VerkhovskiÄ MI; Shinkarev VP; Mulkidzhanian AIa; Grishanova NP Mol Biol (Mosk); 1983; 17(1):33-41. PubMed ID: 6408397 [No Abstract] [Full Text] [Related]
50. Effects of extraction and replacement of ubiquinone upon the photochemical activity of reaction centers and chromatophores from Rhodopseudomonas spheriodes. Cogdell RJ; Brune DC; Clayton RK FEBS Lett; 1974 Sep; 45(1):344-7. PubMed ID: 4547199 [No Abstract] [Full Text] [Related]
51. The dibromothymoquinone effect on membrane potential generation in Rhodospirillum rubrum chromatophores. Oleskin AV; Samuilov VD Membr Biochem; 1983; 5(1):77-95. PubMed ID: 6316108 [TBL] [Abstract][Full Text] [Related]
52. [Bacteriochlorophyll fluorescence changes related to the bacteriopheophytin photoreduction in the chromatophores of purple sulfur bacteria]. Klimov VV; Shuvalov VA; Krakhmaleva IN; Karapetian NV; KrasiovskiÄ AA Biokhimiia; 1976 Aug; 41(8):1435-41. PubMed ID: 1024595 [TBL] [Abstract][Full Text] [Related]
53. Photochemical electron transport in photosynthetic reaction centers. IV. Observations related to the reduced photoproducts. Clayton RK; Straley SC Biophys J; 1972 Oct; 12(10):1221-34. PubMed ID: 4538554 [No Abstract] [Full Text] [Related]
54. New experimental approach to the estimation of rate of electron transfer from the primary to secondary acceptors in the photosynthetic electron transport chain of purple bacteria. Chamorovsky SK; Remennikov SM; Kononenko AA; Venediktov PS; Rubin AB Biochim Biophys Acta; 1976 Apr; 430(1):62-70. PubMed ID: 816385 [TBL] [Abstract][Full Text] [Related]
55. H+ uptake by chromatophores from Rhodopseudomonas spheroides. The relation between rapid H+ uptake and the H+ pump. Cogdell RJ; Crofts AR Biochim Biophys Acta; 1974 May; 347(2):264-72. PubMed ID: 4546206 [No Abstract] [Full Text] [Related]
56. The effect of aging resolved chromatophores of Rhodospirillum rubrum on the capacity to reconstitute the energy-linked transhydrogenation. Guber S; Konings AW; Guillory RJ Biochim Biophys Acta; 1972 Jan; 255(1):161-70. PubMed ID: 4400928 [No Abstract] [Full Text] [Related]
57. Spectrophotometric studies of the mechanism of photosynthesis. Fork DC; Amesz J Photophysiology; 1970; 5():97-126. PubMed ID: 4146947 [No Abstract] [Full Text] [Related]
58. Nature of photochemical reactions in chromatophores of Chromatium D. III. Heterogeneity of the photosynthetic units. Takamiya KI; Nishimura M Biochim Biophys Acta; 1975 Jul; 396(1):93-103. PubMed ID: 167850 [TBL] [Abstract][Full Text] [Related]
59. Spectral and photochemical properties of subchromatophore fractions derived from carotenoid-deficient Chromatium by triton treatment. Ke B; Chaney TH Biochim Biophys Acta; 1971 Mar; 226(2):341-53. PubMed ID: 5575163 [No Abstract] [Full Text] [Related]
60. The effect of redox potential on the coupling between rapid hydrogen-ion binding and electron transport in chromatophores from Rhodopseudomonas spheroides. Cogdell RJ; Jackson JB; Crofts AR J Bioenerg; 1973 Jan; 4(1):211-27. PubMed ID: 4541536 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]