BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 4627194)

  • 1. The branchpoint of pyocyanine biosynthesis.
    Longley RP; Halliwell JE; Campbell JJ; Ingledew WM
    Can J Microbiol; 1972 Sep; 18(9):1357-63. PubMed ID: 4627194
    [No Abstract]   [Full Text] [Related]  

  • 2. Quinate metabolism in Pseudomonas aeruginosa.
    Ingledew WM; Tai CC
    Can J Microbiol; 1972 Dec; 18(12):1817-24. PubMed ID: 4630966
    [No Abstract]   [Full Text] [Related]  

  • 3. Evaluation of shikimic acid as a precursor of pyocyanine.
    Ingledew WM; Campbell JJ
    Can J Microbiol; 1969 Jun; 15(6):535-41. PubMed ID: 4978987
    [No Abstract]   [Full Text] [Related]  

  • 4. A new resuspension medium for pyocyanine production.
    Ingledew WM; Campbell JJ
    Can J Microbiol; 1969 Jun; 15(6):595-8. PubMed ID: 4978988
    [No Abstract]   [Full Text] [Related]  

  • 5. Simultaneous biosynthesis of pyocyanine, phenazine-1-carboxylic acid, and oxychloroaphine from labelled substrates by Pseudomonas aeruginosa Mac 436.
    Chang PC; Blackwood AC
    Can J Biochem; 1968 Aug; 46(8):925-9. PubMed ID: 4970528
    [No Abstract]   [Full Text] [Related]  

  • 6. Stereochemistry of the 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase reaction and the chorismate synthetase reaction.
    Floss HG; Onderka DK; Carroll M
    J Biol Chem; 1972 Feb; 247(3):736-44. PubMed ID: 4550759
    [No Abstract]   [Full Text] [Related]  

  • 7. The branch point metabolite for pyocyanine biosynthesis in Pseudomonas aeruginosa.
    Calhoun DH; Carson M; Jensen RA
    J Gen Microbiol; 1972 Oct; 72(3):581-3. PubMed ID: 4629136
    [No Abstract]   [Full Text] [Related]  

  • 8. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. Branch-point enzymes of the shikimic acid pathway.
    Lowe DA; Westlake DW
    Can J Biochem; 1972 Oct; 50(10):1064-73. PubMed ID: 5084351
    [No Abstract]   [Full Text] [Related]  

  • 9. Genetic analysis of phenylalanine-responding mutants of Pseudomonas aeruginosa.
    Waltho JA
    J Bacteriol; 1972 Dec; 112(3):1070-5. PubMed ID: 4629651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic facilitation in vitro by two multienyzme complexes from Neurospora crassa.
    Gaertner FH; Ericson MC; DeMoss JA
    J Biol Chem; 1970 Feb; 245(3):595-600. PubMed ID: 4312868
    [No Abstract]   [Full Text] [Related]  

  • 11. Repression of aromatic amino acid biosynthesis in Escherichia coli K-12.
    Brown KD; Somerville RL
    J Bacteriol; 1971 Oct; 108(1):386-99. PubMed ID: 4399341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inducible quinate-shikimate catabolic pathway in Neurospora crassa: genetic organization.
    Chaleff RS
    J Gen Microbiol; 1974 Apr; 81(2):337-55. PubMed ID: 4275708
    [No Abstract]   [Full Text] [Related]  

  • 13. Biosynthesis of phenazine pigments in mutant and wild-type cultures of Pseudomonas aeruginosa.
    Byng GS; Eustice DC; Jensen RA
    J Bacteriol; 1979 Jun; 138(3):846-52. PubMed ID: 110770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separability of enzymes of the common aromatic biosynthetic pathway in Mycobacterium phlei.
    Yapo A; Catala F; Azerad R
    Biochimie; 1974; 56(8):1145-6. PubMed ID: 4447810
    [No Abstract]   [Full Text] [Related]  

  • 15. The pre-chorismate (shikimate) and quinate pathways in filamentous fungi: theoretical and practical aspects.
    Hawkins AR; Lamb HK; Moore JD; Charles IG; Roberts CF
    J Gen Microbiol; 1993 Dec; 139(12):2891-9. PubMed ID: 8126417
    [No Abstract]   [Full Text] [Related]  

  • 16. Regulatory gene of phenylalanine biosynthesis (pheR) in Salmonella typhimurium.
    Gollub EG; Liu KP; Sprinson DB
    J Bacteriol; 1973 Jul; 115(1):121-8. PubMed ID: 4577738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inducible quinate-shikimate catabolic pathway in Neurospora crassa: induction and regulation of enzyme synthesis.
    Chaleff RS
    J Gen Microbiol; 1974 Apr; 81(2):357-72. PubMed ID: 4275849
    [No Abstract]   [Full Text] [Related]  

  • 18. In vivo overproduction of the pentafunctional arom polypeptide in Aspergillus nidulans affects metabolic flux in the quinate pathway.
    Lamb HK; Bagshaw CR; Hawkins AR
    Mol Gen Genet; 1991 Jun; 227(2):187-96. PubMed ID: 1648168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STUDY OF THE BIOSYNTHESIS OF PHENAZINE-1-CARBOXYLIC ACID.
    LEVITCH ME; STADTMAN ER
    Arch Biochem Biophys; 1964 Jul; 106():194-9. PubMed ID: 14218203
    [No Abstract]   [Full Text] [Related]  

  • 20. In vivo oxidative coupling of anilines and phenolic anilines.
    Hollstein U; Burton RA; White JA
    Experientia; 1966 Apr; 22(4):210-1. PubMed ID: 4959511
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.