These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 4627549)

  • 21. Relative activity of Bacillus thuringiensis var. kurstaki and B. thuringiensis var. israelensis against larvae of Aedes aegypti, Culex quinquefasciatus, trichoplusia ni, Heliothis zea, and Heliothis virescens.
    Ignoffo CM; Couch TL; Garcia C; Kroha MJ
    J Econ Entomol; 1981 Apr; 74(2):218-22. PubMed ID: 7320315
    [No Abstract]   [Full Text] [Related]  

  • 22. [Applications of bacterial pathogens to the mosquito control].
    Lu KH; Hou RF
    Gaoxiong Yi Xue Ke Xue Za Zhi; 1990 Jul; 6(7):344-9. PubMed ID: 2402023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of insect populations by protozoa and nematodes.
    Pramer D; al-Rabiai S
    Ann N Y Acad Sci; 1973 Jun; 217():85-92. PubMed ID: 4146290
    [No Abstract]   [Full Text] [Related]  

  • 24. The microsporidian Plistophora culicis Weiser, 1946 in different mosquito hosts.
    Weiser J; Coluzzi M
    Folia Parasitol (Praha); 1972; 19(3):197-202. PubMed ID: 4151783
    [No Abstract]   [Full Text] [Related]  

  • 25. Beauveria tenella as a control agent for mosquito larvae.
    Pinnock DE; Garcia R; Cubbin CM
    J Invertebr Pathol; 1973 Sep; 22(2):143-7. PubMed ID: 4798943
    [No Abstract]   [Full Text] [Related]  

  • 26. Curzerene, trans-β-elemenone, and γ-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus: toxicity on non-target aquatic predators.
    Govindarajan M; Rajeswary M; Senthilmurugan S; Vijayan P; Alharbi NS; Kadaikunnan S; Khaled JM; Benelli G
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10272-10282. PubMed ID: 28353108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protocol for the introduction of new Bacillus thuringiensis Israelensis products into the routine mosquito control program in Germany.
    Becker N; Rettich F
    J Am Mosq Control Assoc; 1994 Dec; 10(4):527-33. PubMed ID: 7707059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predatory potential of Nepa cinerea against mosquito larvae in laboratory conditions.
    Singh RK; Singh SP
    J Commun Dis; 2004 Jun; 36(2):105-10. PubMed ID: 16295671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Guppies as predators of common mosquito larvae in Malaysia.
    Saleeza SN; Norma-Rashid Y; Sofian-Azirun M
    Southeast Asian J Trop Med Public Health; 2014 Mar; 45(2):299-308. PubMed ID: 24968669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new serovar of Bacillus thuringiensis possessing 28a28c flagellar antigenic structure: Bacillus thuringiensis serovar jegathesan, selectively toxic against mosquito larvae.
    Seleena P; Lee HL; Lecadet MM
    J Am Mosq Control Assoc; 1995 Dec; 11(4):471-3. PubMed ID: 8825511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial control of vectors: a decade of progress.
    Davidson EW; Sweeney AW
    J Med Entomol; 1983 May; 20(3):235-47. PubMed ID: 6135806
    [No Abstract]   [Full Text] [Related]  

  • 32. [The suitability of bacterial preparations intended for mosquito control in salt water].
    Rasnitsyn OP; Voĭtsik AA; Skidan KB
    Med Parazitol (Mosk); 1993; (3):33-4. PubMed ID: 8041317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mosquito host range and field activity of Bacillus sphaericus isolate 2297 (serotype 25).
    Lacey LA; Lacey CM; Peacock B; Thiery I
    J Am Mosq Control Assoc; 1988 Mar; 4(1):51-6. PubMed ID: 2903904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation of novel Bacillus species showing high mosquitocidal activity against several mosquito species.
    Hayes SR; Hudon M; Park HW
    J Invertebr Pathol; 2011 May; 107(1):79-81. PubMed ID: 21276795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel insecticidal serotype of Clostridium bifermentans.
    Seleena P; Lee HL; Lecadet MM
    J Am Mosq Control Assoc; 1997 Dec; 13(4):395-7. PubMed ID: 9474569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Bacillus thuringiensis israelensis on Anopheles arabiensis.
    Futami K; Kongere JO; Mwania MS; Lutiali PA; Njenga SM; Minakawa N
    J Am Mosq Control Assoc; 2011 Mar; 27(1):81-3. PubMed ID: 21476453
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of highly effective mosquito nanolarvicides using an Asian plant of ethno-pharmacological interest, Priyangu (Aglaia elaeagnoidea): toxicity on non-target mosquito natural enemies.
    Benelli G; Govindarajan M; Senthilmurugan S; Vijayan P; Kadaikunnan S; Alharbi NS; Khaled JM
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10283-10293. PubMed ID: 28390026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental introduction of a microsporidian into a wild population of Culex pipiens fatigans Wied.
    Reynolds DG
    Bull World Health Organ; 1972; 46(6):807-12. PubMed ID: 4538542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficacy of Aphanius dispar (Rüppell) an indigenous larvivorous fish for vector control in domestic tanks under the Sardar Sarovar Narmada project command area in District Kheda, Gujarat.
    Haq S; Srivastava HC
    J Vector Borne Dis; 2013; 50(2):137-40. PubMed ID: 23995316
    [No Abstract]   [Full Text] [Related]  

  • 40. Laboratory study on larvicidal properties of leaf extract of Calotropis procera (Family-Asclepiadaceae) against mosquito larvae.
    Singh RK; Mittal PK; Dhiman RC
    J Commun Dis; 2005 Jun; 37(2):109-13. PubMed ID: 16749273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.