These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 4627969)

  • 1. Effect of ultrasonic waves on the heat resistance of Bacillus cereus and Bacillus licheniformis spores.
    Burgos J; Ordóñez JA; Sala F
    Appl Microbiol; 1972 Sep; 24(3):497-8. PubMed ID: 4627969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the lanthanides, lanthanum and neodymium on the heat resistance of Bacillus cereus spores.
    Bulman RA; Stretton RJ
    Microbios; 1975; 12(50):167-74. PubMed ID: 808682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of ultrasonication and thermal and pressure treatments, individually and combined, on inactivation of Bacillus cereus spores.
    Lv R; Zou M; Chantapakul T; Chen W; Muhammad AI; Zhou J; Ding T; Ye X; Liu D
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2329-2338. PubMed ID: 30627794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of trichloroacetic acid treatment on certain properties of spores of Bacillus cereus T.
    Shibata H; Uchida M; Hayashi H; Tani I
    Microbiol Immunol; 1979; 23(5):339-47. PubMed ID: 41162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence of events during rapid germination of spores of Bacillus cereus.
    Dring GJ; Gould GW
    J Gen Microbiol; 1971 Jan; 65(1):101-4. PubMed ID: 4996778
    [No Abstract]   [Full Text] [Related]  

  • 6. Bacillus spore wet heat resistance and evidence for the role of an expanded osmoregulatory spore cortex.
    Rao L; Liao X; Setlow P
    Lett Appl Microbiol; 2016 Oct; 63(4):247-53. PubMed ID: 27424522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Structural and biochemical changes in the spores of Bacillus cereus exposed to caustic soda and hypochlorite].
    Kulikovskiĭ AV
    Mikrobiologiia; 1976; 45(1):128-32. PubMed ID: 820941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution solid-state 13C nuclear magnetic resonance of bacterial spores: identification of the alpha-carbon signal of dipicolinic acid.
    Lundin RE; Sacks LE
    Appl Environ Microbiol; 1988 Apr; 54(4):923-8. PubMed ID: 3132103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat stability of Bacillus cereus enzymes within spores and in extracts.
    Warth AD
    J Bacteriol; 1980 Jul; 143(1):27-34. PubMed ID: 6772628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the wet-heat inactivation dynamics of single spores of Bacillus species by using Raman tweezers, differential interference contrast microscopy, and nucleic acid dye fluorescence microscopy.
    Zhang P; Kong L; Wang G; Setlow P; Li YQ
    Appl Environ Microbiol; 2011 Jul; 77(14):4754-69. PubMed ID: 21602365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Germination properties of spores with low dipicolinic acid content.
    KEYNAN A; MURRELL WG; HALVORSON HO
    J Bacteriol; 1962 Feb; 83(2):395-9. PubMed ID: 14455468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores.
    Luu-Thi H; Corthouts J; Passaris I; Grauwet T; Aertsen A; Hendrickx M; Michiels CW
    Int J Food Microbiol; 2015 Mar; 197():45-52. PubMed ID: 25560915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ultrasonic waves on the heat resistance of Bacillus spores.
    Ordoñez JA; Burgos J
    Appl Environ Microbiol; 1976 Jul; 32(1):183-4. PubMed ID: 823864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Levels of Ca2+-dipicolinic acid in individual bacillus spores determined using microfluidic Raman tweezers.
    Huang SS; Chen D; Pelczar PL; Vepachedu VR; Setlow P; Li YQ
    J Bacteriol; 2007 Jul; 189(13):4681-7. PubMed ID: 17468248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoprotection by dipicolinate against inactivation of bacterial spores with ultraviolet light.
    Grecz N; Tang T; Frank HA
    J Bacteriol; 1973 Feb; 113(2):1058-60. PubMed ID: 4632312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spore refractility in variants of Bacillus cereus treated with actinomycin D.
    Pearce SM; Fitz-James PC
    J Bacteriol; 1971 Jul; 107(1):337-44. PubMed ID: 4998247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release of dipicolinic acid and calcium and activation of Bacillus stearothermophilus spores as a function of time, temperature and pH.
    Brown MR; Melling J
    J Pharm Pharmacol; 1973 Jun; 25(6):478-83. PubMed ID: 4146587
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibition of germination of Bacillus cereus T spores by phenylglyoxal.
    Ram BP; Rana RS; Gollakota KG
    Folia Microbiol (Praha); 1979; 24(3):228-33. PubMed ID: 112015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microgermination of Bacillus cereus spores.
    Hashimoto T; Frieben WR; Conti SF
    J Bacteriol; 1969 Dec; 100(3):1385-92. PubMed ID: 4982896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudogermination in dipicolinic acid-less spores of a Bacillus cereus T mutant.
    Frank HA; Tonaki KI
    J Bacteriol; 1971 Apr; 106(1):292-3. PubMed ID: 4994601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.