These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 4628390)

  • 1. Symposium on 'manipulation of rumen fermentation'. Chairman's introduction.
    Rook JA
    Proc Nutr Soc; 1972 Sep; 31(2):125-6. PubMed ID: 4628390
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies of the effects on the fermentation pattern in the rumen of the addition of various sources and levels of the lower volatile fatty acids.
    Griffiths TW
    J Sci Food Agric; 1971 Nov; 22(11):592-5. PubMed ID: 5139814
    [No Abstract]   [Full Text] [Related]  

  • 3. Influence of disodium malate on microbial growth and fermentation in rumen-simulation technique fermenters receiving medium- and high-concentrate diets.
    Gómez JA; Tejido ML; Carro MD
    Br J Nutr; 2005 Apr; 93(4):479-84. PubMed ID: 15946409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary study of the effects of condensed barley distillers soluble on rumen fermentation and plasma metabolites in Japanese Black cows.
    Tsuruoka K; Kanamaru H; Takahashi H; Gotoh T
    Anim Sci J; 2017 Apr; 88(4):610-617. PubMed ID: 27530452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of grazing steers as related to volatile fatty acid production after different lengths of in vitro fermentation.
    Barth KM; Shumway PE; Kazzal NT; Davis DI
    J Anim Sci; 1972 Apr; 34(4):636-41. PubMed ID: 5018017
    [No Abstract]   [Full Text] [Related]  

  • 6. Physiological characteristics of rumen microbes and relation to diet and fermentation patterns.
    Hobson PN
    Proc Nutr Soc; 1972 Sep; 31(2):135-9. PubMed ID: 4628391
    [No Abstract]   [Full Text] [Related]  

  • 7. Ruminal volatile fatty acid concentrations and weight gains of calves reared with and without ruminal ciliated protozoa.
    Williams PP; Dinusson WE
    J Anim Sci; 1973 Mar; 36(3):588-91. PubMed ID: 4632758
    [No Abstract]   [Full Text] [Related]  

  • 8. Pony cecum vs. steer rumen: the effect of oats and hay on the microbial ecosystem.
    Kern DL; Slyter LL; Weaver JM; Leffel EC; Samuelson G
    J Anim Sci; 1973 Aug; 37(2):463-9. PubMed ID: 4201259
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of restricted intake of a barley diet on rumen fermentation in cattle.
    Eadie JM; Hyldgaard-Jensen J; Mann SO; Reid RS; Whitelaw FG
    Proc Nutr Soc; 1969 Sep; 28(2):44A-45A. PubMed ID: 4982063
    [No Abstract]   [Full Text] [Related]  

  • 10. Some effects of rumen ciliate protozoa in cattle given restricted amounts of a barley diet.
    Whitelaw FG; Eadie JM; Mann SO; Reid RS
    Br J Nutr; 1972 Mar; 27(2):425-37. PubMed ID: 4622614
    [No Abstract]   [Full Text] [Related]  

  • 11. Relationship between the pattern of ruminal fermentation and the flow of materials to the duodenum in sheep receiving a diet of barley, flaked maize and ground hay.
    Ishaque M; Thomas PC; Rook JA
    Proc Nutr Soc; 1971 May; 30(1):1A-2A. PubMed ID: 5090469
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of dietary forage sources on rumen microbiota, rumen fermentation and biogenic amines in dairy cows.
    Zhang R; Zhu W; Zhu W; Liu J; Mao S
    J Sci Food Agric; 2014 Jul; 94(9):1886-95. PubMed ID: 24375419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissimilation of 1,2-propanediol by rumen micro-organisms.
    Czerkawski JW; Breckenridge G
    Br J Nutr; 1973 Mar; 29(2):317-30. PubMed ID: 4693564
    [No Abstract]   [Full Text] [Related]  

  • 14. A relationship between the molar proportion of propionic acid and the clearance rate of the liquid phase in the rumen of the sheep.
    Hodgson JC; Thomas PC
    Br J Nutr; 1975 May; 33(3):447-56. PubMed ID: 235941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of rumen bacteria in dairy cows with varied milk protein yield.
    Xue MY; Sun HZ; Wu XH; Guan LL; Liu JX
    J Dairy Sci; 2019 Jun; 102(6):5031-5041. PubMed ID: 30981485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of active dried Saccharomyces cerevisiae on ruminal fermentation and bacterial community during the short-term ruminal acidosis challenge model in Holstein calves.
    Watanabe Y; Kim YH; Kushibiki S; Ikuta K; Ichijo T; Sato S
    J Dairy Sci; 2019 Jul; 102(7):6518-6531. PubMed ID: 31030914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rumen responses to dietary supplementation with cashew nut shell liquid and its cessation in sheep.
    Kang S; Suzuki R; Suzuki Y; Koike S; Nagashima K; Kobayashi Y
    Anim Sci J; 2018 Nov; 89(11):1549-1555. PubMed ID: 30182380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting the uptake and metabolism of soluble carbohydrates by the rumen ciliate Dasytricha ruminantium isolated from ovine rumen contents by filtration.
    Williams AG; Harfoot CG
    J Gen Microbiol; 1976 Sep; 96(1):125-36. PubMed ID: 10343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of forage source and forage particle size as a free-choice provision on growth performance, rumen fermentation, and behavior of dairy calves fed texturized starters.
    Omidi-Mirzaei H; Azarfar A; Mirzaei M; Kiani A; Ghaffari MH
    J Dairy Sci; 2018 May; 101(5):4143-4157. PubMed ID: 29477531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls.
    Nagata R; Kim YH; Ohkubo A; Kushibiki S; Ichijo T; Sato S
    J Dairy Sci; 2018 May; 101(5):4424-4436. PubMed ID: 29477528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.