These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 4628746)

  • 21. Bacterial metabolism of arylsulfonates: role of meta cleavage in benzene sulfonate oxidation by Pseudomonas testosteroni.
    Ripin MJ; Cook TM; Noon KF; Stark LE
    Appl Microbiol; 1975 Mar; 29(3):382-7. PubMed ID: 163618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. XYL, a nonconjugative xylene-degradative plasmid in Pseudomonas Pxy.
    Friello DA; Mylroie JR; Gibson DT; Rogers JE; Chakrabarty AM
    J Bacteriol; 1976 Sep; 127(3):1217-24. PubMed ID: 956125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of phenol and m-toluate in Pseudomonas sp. strain EST1001 and its Pseudomonas putida transconjugants is determined by a multiplasmid system.
    Kivisaar MA; Habicht JK; Heinaru AL
    J Bacteriol; 1989 Sep; 171(9):5111-6. PubMed ID: 2768199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Comparative study of the plasmids controlling naphthalene biodegradation by a Pseudomonas culture].
    Kochetkov VV; Boronin AM
    Mikrobiologiia; 1984; 53(4):639-44. PubMed ID: 6434909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The genetics of dissimilarity pathways in Pseudomonas.
    Wheelis L
    Annu Rev Microbiol; 1975; 29():505-24. PubMed ID: 1180523
    [No Abstract]   [Full Text] [Related]  

  • 26. The induction of the enzymes of naphthalene metabolism in pseudomonads by salicylate and 2-aminobenzoate.
    Barnsley EA
    J Gen Microbiol; 1975 May; 88(1):193-6. PubMed ID: 1151334
    [No Abstract]   [Full Text] [Related]  

  • 27. Isolation of a mutant TOL plasmid with increased activity and transmissibility from Pseudomonas putida (arvilla) mt-2.
    Nakazawa T; Yokota T
    J Bacteriol; 1977 Jan; 129(1):39-46. PubMed ID: 830645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inducible uptake system for -carboxy-cis, cis-muconate in a permeability mutant of Pseudomonas putida.
    Meagher RB; McCorkle GM; Ornston MK; Ornston LN
    J Bacteriol; 1972 Aug; 111(2):465-73. PubMed ID: 5053469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of the mandelate pathway in Pseudomonas aeruginosa.
    Rosenberg SL
    J Bacteriol; 1971 Dec; 108(3):1257-69. PubMed ID: 5003176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preliminary study on relationships among strains forming a bacterial community selected on naphthalene from a marine sediment.
    Tagger S; Truffaut N; Le Petit J
    Can J Microbiol; 1990 Oct; 36(10):676-81. PubMed ID: 2253108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transposition of a beta-lactamase locus from RP1 into Pseudomonas putida degradative plasmids.
    Benedik M; Fennewald M; Shapiro J
    J Bacteriol; 1977 Feb; 129(2):809-14. PubMed ID: 584205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a spontaneously occurring mutant of the TOL20 plasmid in Pseudomonas putida MT20: possible regulatory implications.
    Worsey MJ; Williams PA
    J Bacteriol; 1977 Jun; 130(3):1149-58. PubMed ID: 863853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clinical isolate of Pseudomonas aeruginosa that degrades salicylate by the ortho pathway.
    Ohta S; Matsumoto H; Terawaki Y
    Appl Environ Microbiol; 1981 Jan; 41(1):312-4. PubMed ID: 6784670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Constitutive glucose-6-phosphate dehydrogenase in mutants utilizing glucose, which are derived from cryptic wildtype strains].
    König C; Sammler I; Wilde E; Schlegel HG
    Arch Mikrobiol; 1969; 67(1):51-7. PubMed ID: 4988637
    [No Abstract]   [Full Text] [Related]  

  • 35. Molecular cloning of salicylate hydroxylase genes from Pseudomonas cepacia and Pseudomonas putida.
    Kim Y; Tu SC
    Arch Biochem Biophys; 1989 Feb; 269(1):295-304. PubMed ID: 2916843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissociation of a degradative plasmid aggregate in Pseudomonas.
    Chakrabarty AM
    J Bacteriol; 1974 Jun; 118(3):815-20. PubMed ID: 4829926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic analysis of phenylalanine-responding mutants of Pseudomonas aeruginosa.
    Waltho JA
    J Bacteriol; 1972 Dec; 112(3):1070-5. PubMed ID: 4629651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of aromatics biodegradation by rhl quorum sensing system through induction of catechol meta-cleavage pathway.
    Yong YC; Zhong JJ
    Bioresour Technol; 2013 May; 136():761-5. PubMed ID: 23582222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Regulation of the synthesis of the key enzymes for naphthalene catabolism in Pseudomonas putida and Pseudomonas fluorescens carrying the biodegradation plasmids NAH, pBS3, pBS2 and NPL-1].
    Starovoĭtov II
    Mikrobiologiia; 1985; 54(5):755-62. PubMed ID: 3937034
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recruitment of naphthalene dissimilatory enzymes for the oxidation of 1,4-dichloronaphthalene to 3,6-dichlorosalicylate, a precursor for the herbicide dicamba.
    Durham DR; Stewart DB
    J Bacteriol; 1987 Jun; 169(6):2889-92. PubMed ID: 3584076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.