These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 4628746)

  • 41. A 90-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715.
    Nishi A; Tominaga K; Furukawa K
    J Bacteriol; 2000 Apr; 182(7):1949-55. PubMed ID: 10715002
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Salicylate degradation by Pseudomonas putida strains not involving the "classical" nah2 operon].
    Sazonova OI; Izmalkova TIu; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2008; 77(6):798-804. PubMed ID: 19137719
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Mutants of the plasmid for biodegradation of naphthalene, determining catechol oxidation via the meta-pathway].
    Kulakova AN; Boronin AM
    Mikrobiologiia; 1989; 58(2):298-304. PubMed ID: 2811710
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetics of the mandelate pathway in Pseudomonas aeruginosa.
    Rosenberg SL; Hegeman GD
    J Bacteriol; 1971 Dec; 108(3):1270-6. PubMed ID: 5003177
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Occurrence of the SAL+ phenotype in soil pseudomonads].
    Kosheleva IA; Sazonova OI; Izmalkova TY; Boronin AM
    Mikrobiologiia; 2014; 83(6):703-11. PubMed ID: 25941720
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fusion and compatibility of camphor and octane plasmids in Pseudomonas.
    Chou GI; Katz D; Gunsalus IC
    Proc Natl Acad Sci U S A; 1974 Jul; 71(7):2675-8. PubMed ID: 4527812
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolism of phenol and cresols by mutants of Pseudomonas putida.
    Bayly RC; Wigmore GJ
    J Bacteriol; 1973 Mar; 113(3):1112-20. PubMed ID: 4347965
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microbial metabolism of chlorosalicylates: accelerated evolution by natural genetic exchange.
    Rubio MA; Engesser KH; Knackmuss HJ
    Arch Microbiol; 1986 Jul; 145(2):116-22. PubMed ID: 3767567
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella calcoacetica. 2. The role of protocatechuate as inducer.
    Cánovas JL; Wheelis ML; Stanier RY
    Eur J Biochem; 1968 Jan; 3(3):293-304. PubMed ID: 5645525
    [No Abstract]   [Full Text] [Related]  

  • 50. Stereospecific enzymes in the degradation of aromatic compounds by pseudomonas putida.
    Collinsworth WL; Chapman PJ; Dagley S
    J Bacteriol; 1973 Feb; 113(2):922-31. PubMed ID: 4690969
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of valine catabolism in Pseudomonas putida.
    Marshall VD; Sokatch JR
    J Bacteriol; 1972 Jun; 110(3):1073-81. PubMed ID: 5030618
    [TBL] [Abstract][Full Text] [Related]  

  • 52. NIC, a conjugative nicotine-nicotinate degradative plasmid in Pseudomonas convexa.
    Thacker R; Rørvig O; Kahlon P; Gunsalus IC
    J Bacteriol; 1978 Jul; 135(1):289-90. PubMed ID: 670150
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of the -ketoadipate pathway in Alcaligenes eutrophus.
    Johnson BF; Stanier RY
    J Bacteriol; 1971 Aug; 107(2):476-85. PubMed ID: 5113599
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A transmissible plasmid controlling camphor oxidation in Pseudomonas putida.
    Rheinwald JG; Chakrabarty AM; Gunsalus IC
    Proc Natl Acad Sci U S A; 1973 Mar; 70(3):885-9. PubMed ID: 4351810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida.
    Hopper DJ; Taylor DG
    J Bacteriol; 1975 Apr; 122(1):1-6. PubMed ID: 1123316
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physically associated enzymes produce and metabolize 2-hydroxy-2,4-dienoate, a chemically unstable intermediate formed in catechol metabolism via meta cleavage in Pseudomonas putida.
    Harayama S; Rekik M; Ngai KL; Ornston LN
    J Bacteriol; 1989 Nov; 171(11):6251-8. PubMed ID: 2681159
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2.
    Fuenmayor SL; Wild M; Boyes AL; Williams PA
    J Bacteriol; 1998 May; 180(9):2522-30. PubMed ID: 9573207
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Constitutive synthesis of enzymes of the protocatechuate pathway and of the beta-ketoadipate uptake system in mutant strains of Pseudomonas putida.
    Parke D; Ornston LN
    J Bacteriol; 1976 Apr; 126(1):272-81. PubMed ID: 1262305
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation.
    Prabhu Y; Phale PS
    Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid.
    Worsey MJ; Williams PA
    J Bacteriol; 1975 Oct; 124(1):7-13. PubMed ID: 1176436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.