BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 4629656)

  • 1. Heterofermentative carbohydrate metabolism of lactose-impaired mutants of Streptococcus lactis.
    Demko GM; Blanton SJ; Benoit RE
    J Bacteriol; 1972 Dec; 112(3):1335-45. PubMed ID: 4629656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbohydrate metabolism of lactic acid cultures. V. Lactobionate and gluconate metabolism of Streptococcus lactis UN.
    Vakil JR; Shahani KM
    J Dairy Sci; 1969 Dec; 52(12):1928-34. PubMed ID: 5377292
    [No Abstract]   [Full Text] [Related]  

  • 3. Involvement of phosphoenolpyruvate in lactose utilization by group N streptococci.
    McKay LL; Walter LA; Sandine WE; Elliker PR
    J Bacteriol; 1969 Aug; 99(2):603-10. PubMed ID: 5808082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
    Cords BR; McKay LL
    J Bacteriol; 1974 Sep; 119(3):830-9. PubMed ID: 4368487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation.
    Thomas TD; Turner KW; Crow VL
    J Bacteriol; 1980 Nov; 144(2):672-82. PubMed ID: 6776093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of lac+ transductants of Streptococcus lactis.
    Molskness TA; Sandine WE; Brown LR
    Appl Microbiol; 1974 Nov; 28(5):753-8. PubMed ID: 4216286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose degradation, molar growth yields, and evidence for oxidative phosphorylation in Streptococcus agalactiae.
    Mickelson MN
    J Bacteriol; 1972 Jan; 109(1):96-105. PubMed ID: 4550679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered superoxide dismutase activity by carbohydrate utilization in a Lactococcus lactis strain.
    Kimoto-Nira H; Moriya N; Ohmori H; Suzuki C
    J Food Prot; 2014 Jul; 77(7):1161-7. PubMed ID: 24988023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses.
    McKay L; Miller A; Sandine WE; Elliker PR
    J Bacteriol; 1970 Jun; 102(3):804-9. PubMed ID: 5429725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short communication: Enzymatic perspective of galactosidases reveals variations in lactose metabolism among Lactococcus lactis strains.
    Yang Y; Li N; Jiang Y; Liu Z; Liu X; Zhao J; Zhang H; Chen W
    J Dairy Sci; 2019 Jul; 102(7):6027-6031. PubMed ID: 31056324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio.
    Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M
    J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbohydrate metabolism in lactic streptococci: fate of galactose supplied in free or disaccharide form.
    Lee R; Molskness T; Sandine WE; Elliker PR
    Appl Microbiol; 1973 Dec; 26(6):951-8. PubMed ID: 4203337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of metabolic energy in the transport of -galactosides by Streptococcus lactis.
    Kashket ER; Wilson TH
    J Bacteriol; 1972 Feb; 109(2):784-9. PubMed ID: 4621686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galactose metabolism. I. Pathway of carbon in fermentation by Streptococcus faecalis.
    FUKUYAMA TT; O'KANE DJ
    J Bacteriol; 1962 Oct; 84(4):793-6. PubMed ID: 13960210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of lactate dehydrogenase and change of fermentation products in streptococci.
    Yamada T; Carlsson J
    J Bacteriol; 1975 Oct; 124(1):55-61. PubMed ID: 1176435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of lactose and citrate by mutants of Lactococcus lactis producing excess carbon dioxide.
    El Attar A; Monnet C; Corrieu G
    J Dairy Res; 2000 Nov; 67(4):571-83. PubMed ID: 11131070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. -D-phosphogalactoside galactohydrolase of lactic streptococci.
    Molskness TA; Lee DR; Sandine WE; Elliker PR
    Appl Microbiol; 1973 Mar; 25(3):373-80. PubMed ID: 4633424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of lactose metabolism in lactic streptococci.
    McKay LL; Baldwin KA; Zottola EA
    Appl Microbiol; 1972 Jun; 23(6):1090-6. PubMed ID: 4625340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis.
    Fordyce AM; Crow VL; Thomas TD
    Appl Environ Microbiol; 1984 Aug; 48(2):332-7. PubMed ID: 6435521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.