BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 4630407)

  • 41. Properties of reaction centers of Rhodopseudomonas sphaeroides in dried gelatin films. Linear dichroism and low temperature spectra.
    Rafferty CN; Clayton RK
    Biochim Biophys Acta; 1978 Apr; 502(1):51-60. PubMed ID: 305788
    [No Abstract]   [Full Text] [Related]  

  • 42. Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodospirillum sphaeroides using reconstitution methodology with bacteriochlorophyll analogs.
    Davis CM; Parkes-Loach PS; Cook CK; Meadows KA; Bandilla M; Scheer H; Loach PA
    Biochemistry; 1996 Mar; 35(9):3072-84. PubMed ID: 8608148
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On the state of carotenoids bound to reaction centers of photosynthetic bacteria: a resonance Raman study.
    Lutz M; Agalidis I; Hervo G; Cogdell RJ; Reiss-Husson F
    Biochim Biophys Acta; 1978 Aug; 503(2):287-303. PubMed ID: 99169
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Purification and properties of a photosynthetic reaction center isolated from various chromatophore fractions of Rhodopseudomonas spheroides Y.
    Reiss-Husson F; Jolchine G
    Biochim Biophys Acta; 1972 Feb; 256(2):440-51. PubMed ID: 4536948
    [No Abstract]   [Full Text] [Related]  

  • 45. Fluorescence excitation spectra and the relative numbers of pigment molecules in reaction centres from Rhodopseudomonas spheroides.
    Slooten L
    Biochim Biophys Acta; 1973 Jul; 314(1):15-27. PubMed ID: 4542616
    [No Abstract]   [Full Text] [Related]  

  • 46. Nanosecond fluorescence from chromatophores of Rhodopseudomonas sphaeroides and Rhodospirillum rubrum.
    Woodbury NW; Parson WW
    Biochim Biophys Acta; 1986 Jul; 850(2):197-210. PubMed ID: 3087422
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dependency on environmental redox potential of photophosphorylation in Rhodopseudomonas spheroides.
    Culbert-Runquist JA; Hadsell RM; Loach PA
    Biochemistry; 1973 Aug; 12(18):3508-14. PubMed ID: 4542403
    [No Abstract]   [Full Text] [Related]  

  • 48. Primary photochemistry and electron transport in Rhodospirillum rubrum.
    Loach PA; Sekura DL
    Biochemistry; 1968 Jul; 7(7):2642-9. PubMed ID: 5690721
    [No Abstract]   [Full Text] [Related]  

  • 49. Oxido-reduction of B800-850 and B880 holochromes isolated from three species of photosynthetic bacteria as studied by electron-paramagnetic resonance and optical spectroscopy.
    Picorel R; Lefebvre S; Gingras G
    Eur J Biochem; 1984 Jul; 142(2):304-11. PubMed ID: 6086349
    [TBL] [Abstract][Full Text] [Related]  

  • 50. STUDIES ON THE ELECTRON-TRANSFER SYSTEMS IN PHOTOSYNTHETIC BACTERIA. IV. KINETICS OF LIGHT-INDUCED CYTOCHROME REACTIONS AND ANALYSIS OF ELECTRON-TRANSFER PATHS.
    NISHIMURA M; ROY SB; SCHLEYER H; CHANCE B
    Biochim Biophys Acta; 1964 Sep; 88():251-66. PubMed ID: 14249834
    [No Abstract]   [Full Text] [Related]  

  • 51. Interrelationships among excited states in bacterial reaction centers.
    Parson WW; Monger TG
    Brookhaven Symp Biol; 1976 Jun 7-9; (28):195-212. PubMed ID: 830043
    [No Abstract]   [Full Text] [Related]  

  • 52. Immunochemical relationship of the major outer membrane protein of Rhodopseudomonas sphaeroides 2.4.1 to proteins of other photosynthetic bacteria.
    Deal CD; Kaplan S
    J Bacteriol; 1983 May; 154(2):1015-20. PubMed ID: 6188744
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The pigment complement of the photosynthetic reaction center isolated from Rhodospirillum rubrum.
    Van der Rest M; Gingras G
    J Biol Chem; 1974 Oct; 249(20):6446-53. PubMed ID: 4214257
    [No Abstract]   [Full Text] [Related]  

  • 54. Primary events in the photosynthetic reaction centre from Rhodopseudomonas spheroides strain R26: triplet and oxidized states of bacteriochlorophyll and the identification of the primary electron acceptor.
    Dutton PL; Leigh JS; Reed DW
    Biochim Biophys Acta; 1973 Apr; 292(3):654-64. PubMed ID: 4350260
    [No Abstract]   [Full Text] [Related]  

  • 55. Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria.
    Saier MH; Feucht BU; Roseman S
    J Biol Chem; 1971 Dec; 246(24):7819-21. PubMed ID: 5002684
    [No Abstract]   [Full Text] [Related]  

  • 56. Flash photolysis-electron spin resonance study of the effect of o-phenanthroline and temperature on the decay time of the ESR signal B1 in reaction-center preparations and chromatophores of mutant and wild strains of Rhodopseudomonas spheroides and Rhodospirillum rubrum.
    Hsi ES; Bolton JR
    Biochim Biophys Acta; 1974 Apr; 347(1):126-33. PubMed ID: 4373063
    [No Abstract]   [Full Text] [Related]  

  • 57. [Possible role of macromolecular components in the functioning of photosynthetic reaction centers of purple bacteria].
    Noks PP; Lukashev EP; Kononenko AA; Venediktov PS; Rubin AB
    Mol Biol (Mosk); 1977; 11(5):1090-9. PubMed ID: 109747
    [TBL] [Abstract][Full Text] [Related]  

  • 58. P430, a possible primary electron acceptor in Rhodospirillum rubrum.
    Silberstein BR; Gromet-Elhanan Z
    FEBS Lett; 1974 Jun; 42(2):141-4. PubMed ID: 4369098
    [No Abstract]   [Full Text] [Related]  

  • 59. Carotenoid triplet states in reaction centers from Rhodopseudomonas sphaeroides and Rhodospirillum rubrum.
    Cogdell RJ; Monger TG; Parson WW
    Biochim Biophys Acta; 1975 Dec; 408(3):189-99. PubMed ID: 811259
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of chlorophyll synthesis in photosynthetic bacteria.
    Lien S; Gest H; San Pietro A
    J Bioenerg; 1973; 4(4):423-34. PubMed ID: 4723530
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.