These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 4630547)

  • 1. Evolutionary mechanism of adaptation of Arthrobacter histodinolovorans and Pseudomonas aeruginosa to use L-histidinol as a sole source of nitrogen and carbon.
    Dhawale MR; Creaser EH; Loper JC
    J Gen Microbiol; 1972 Nov; 73(2):353-8. PubMed ID: 4630547
    [No Abstract]   [Full Text] [Related]  

  • 2. Analysis of an L-histidinol-utilizing mutant of Pseudomonas aeruginosa.
    Dhawale MR; Creaser EH
    J Gen Microbiol; 1975 Dec; 91(2):241-8. PubMed ID: 1461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the regulation of histidinol dehydrogenase induction in Arthrobacter histidinolovorans.
    Dhawale MR; Creaser EH
    Biochem Biophys Res Commun; 1976 Aug; 71(4):901-6. PubMed ID: 971316
    [No Abstract]   [Full Text] [Related]  

  • 4. Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa.
    Li W; Lu CD
    J Bacteriol; 2007 Aug; 189(15):5413-20. PubMed ID: 17545289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunological comparisons of histidinol dehydrogenases.
    Creaser EH; Varela-Torres R
    J Gen Microbiol; 1971 Jul; 67(1):85-90. PubMed ID: 5001387
    [No Abstract]   [Full Text] [Related]  

  • 6. The metabolism of 2-oxogluconate by Pseudomonas aeruginosa.
    Roberts BK; Midgley M; Dawes EA
    J Gen Microbiol; 1973 Oct; 78(2):319-29. PubMed ID: 4202784
    [No Abstract]   [Full Text] [Related]  

  • 7. Influence of carbon or nitrogen starvation on amino acid transport in Pseudomonas aeruginosa.
    Kay WW; Gronlund AF
    J Bacteriol; 1969 Oct; 100(1):276-82. PubMed ID: 4981058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Isoleucine biosynthesis in mutants for arthrobacter following varying growth conditions].
    Baumgarten J
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):308-15. PubMed ID: 4145585
    [No Abstract]   [Full Text] [Related]  

  • 9. Histidine regulation in Salmonella typhimurium. XVI. A sensitive radiochemical assay for histidinol dehydrogenase.
    Cieslà Z; Salvatore F; Broach JR; Artz SW; Ames BN
    Anal Biochem; 1975 Jan; 63(1):44-55. PubMed ID: 1089301
    [No Abstract]   [Full Text] [Related]  

  • 10. [Effect of various carbon sources on cholinesterase formation by Arthrobacter simplex var. cholinesterasus].
    Imshenetskiĭ AA; Kirillova NF; Popova LS
    Mikrobiologiia; 1976; 45(5):763-9. PubMed ID: 1004262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence of inducible and NAD(P)-independent primary alcohol dehydrogenases in an alkane-oxidizing Pseudomonas.
    Van der Linden AC; Huybregtse R
    Antonie Van Leeuwenhoek; 1969; 35(3):344-60. PubMed ID: 4392750
    [No Abstract]   [Full Text] [Related]  

  • 12. Illicit transport: the oligopeptide permease.
    Ames BN; Ames GF; Young JD; Tsuchiya D; Lecocq J
    Proc Natl Acad Sci U S A; 1973 Feb; 70(2):456-8. PubMed ID: 4568730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new procedure for the synthesis of L-histidinol and its application in preparing L-[14C]histidinol.
    Lintermans J; Bearden L
    Biochim Biophys Acta; 1972 Jun; 273(1):18-20. PubMed ID: 4556772
    [No Abstract]   [Full Text] [Related]  

  • 14. Induction of histidine-degrading enzymes in Pseudomonas aeruginosa.
    Newell CP; Lessie TG
    J Bacteriol; 1970 Oct; 104(1):596-8. PubMed ID: 4990767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PA0335, a Gene Encoding Histidinol Phosphate Phosphatase, Mediates Histidine Auxotrophy in
    Wang Y; Wang L; Zhang J; Duan X; Feng Y; Wang S; Shen L
    Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31862725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independent regulation of hexose catabolizing enzymes and glucose transport activity in Pseudomonas aeruginosa.
    Hylemon PB; Phibbs PV
    Biochem Biophys Res Commun; 1972 Sep; 48(5):1041-8. PubMed ID: 4626609
    [No Abstract]   [Full Text] [Related]  

  • 17. Production of rhamnolipid biosurfactant by fed-batch culture of Pseudomonas aeruginosa using glucose as a sole carbon source.
    Lee Y; Lee SY; Yang JW
    Biosci Biotechnol Biochem; 1999 May; 63(5):946-7. PubMed ID: 10380638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of nitrogen limitation on catabolite repression of amidase, histidase and urocanase in Pseudomonas aeruginosa.
    Potts JR; Clarke PH
    J Gen Microbiol; 1976 Apr; 93(2):377-87. PubMed ID: 6623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key enzymes enabling the growth of Arthrobacter sp. strain JBH1 with nitroglycerin as the sole source of carbon and nitrogen.
    Husserl J; Hughes JB; Spain JC
    Appl Environ Microbiol; 2012 May; 78(10):3649-55. PubMed ID: 22427495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of L-threonine deaminase and L-threonine 3-dehydrogenase in the utilization of L-threonine by Pseudomonas aeruginosa.
    Lam VM; Chan IP; Yeung YG
    J Gen Microbiol; 1980 Apr; 117(2):539-42. PubMed ID: 6775044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.