These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 4631973)

  • 41. Effect of valine, leucine, and isoleucine on the production of fly toxin by bacillus thuringiensis and related organisms.
    Conner RM; Hansen PA
    J Invertebr Pathol; 1967 Mar; 9(1):114-25. PubMed ID: 6073674
    [No Abstract]   [Full Text] [Related]  

  • 42. Biosynthesis of branched-chain amino acids in Schizosaccharomyces pombe: regulation of the enzymes involved in isoleucine, valine, and leucine synthesis.
    McDonald RA; Satyanarayana T; Kaplan JG
    Can J Biochem; 1974 Jan; 52(1):51-9. PubMed ID: 4821071
    [No Abstract]   [Full Text] [Related]  

  • 43. Control of isoleucine, valine and leucine biosynthesis. V. Dual effect of alpha-aminobutyric acid on repression and endproduct inhibition in Escherichia coli.
    Freundlich M; Clarke LP
    Biochim Biophys Acta; 1968 Dec; 170(2):271-81. PubMed ID: 4884572
    [No Abstract]   [Full Text] [Related]  

  • 44. Role of alanine-valine transaminase in Salmonella typhimurium and analysis of an avtA::Tn5 mutant.
    Berg CM; Whalen WA; Archambault LB
    J Bacteriol; 1983 Sep; 155(3):1009-14. PubMed ID: 6309735
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Leucine accumulation by isoleucine revertants of Serratia marcescens resistant to -aminobutyric acid: lack of both feedback inhibition and repression.
    Kisumi M; Komatsubara S; Chibata I
    J Biochem; 1973 Jan; 73(1):107-15. PubMed ID: 4570366
    [No Abstract]   [Full Text] [Related]  

  • 46. Central administration of leucine, but not isoleucine and valine, stimulates feeding behavior in neonatal chicks.
    Izumi T; Kawamura K; Ueda H; Bungo T
    Neurosci Lett; 2004 Jan; 354(2):166-8. PubMed ID: 14698464
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetics of unidirectional leucine transport into brain: effects of isoleucine, valine, and anoxia.
    Betz AL; Gilboe DD; Drewes LR
    Am J Physiol; 1975 Mar; 228(3):895-900. PubMed ID: 1090191
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catabolite repression and feedback inhibition of protease in Streptococcus faecalis var. liquefaciens.
    Sashital KS; Zimmerman LN
    Can J Microbiol; 1968 Dec; 14(12):1265-9. PubMed ID: 4974688
    [No Abstract]   [Full Text] [Related]  

  • 49. [The biosynthesis of isoleucine and valine in Hydrogenomonas H 16].
    Reh M; Schlegel HG
    Arch Mikrobiol; 1969; 67(2):110-27. PubMed ID: 4989319
    [No Abstract]   [Full Text] [Related]  

  • 50. Regulation of leucine catabolism in Pseudomonas putida.
    Massey LK; Conrad RS; Sokatch JR
    J Bacteriol; 1974 Apr; 118(1):112-20. PubMed ID: 4150714
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The product of the leu-3 cistron as a regulatory element for the production of the leucine biosynthetic enzymes of Neurospora.
    Polacco JC; Gross SR
    Genetics; 1973 Jul; 74(3):443-59. PubMed ID: 4744402
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Regulation of isoleucine and valine biosynthesis in Bacillus cereus T: possible role of threonine deaminase].
    Raimond J; Fargette F
    C R Acad Hebd Seances Acad Sci D; 1977 Jun; 284(22):2301-4. PubMed ID: 408042
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Studies on conversion of amino fermentation. II. Effect of 6-mercaptopurine on formation of alpha-acetolactate synthase.
    Asada Y; Yamaguchi K; Uemura T
    J Biochem; 1971 Apr; 69(4):633-9. PubMed ID: 5572805
    [No Abstract]   [Full Text] [Related]  

  • 54. Participation of branched-chain amino acid analogues in multivalent repression.
    Wasmuth JJ; Umbarger HE
    J Bacteriol; 1973 Nov; 116(2):562-70. PubMed ID: 4583240
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biosynthesis of lysine in Saccharomyces cerevisiae: regulation of homocitrate synthase in analogue-resistant mutants.
    Gray GS; Bhattacharjee JK
    J Gen Microbiol; 1976 Nov; 97(1):117-20. PubMed ID: 792390
    [No Abstract]   [Full Text] [Related]  

  • 56. Mechanism of feedback inhibition by leucine. Purification and properties of a feedback-resistant alpha-isopropylmalate synthase.
    Soper TS; Doellgast J; Kohlhaw GB
    Arch Biochem Biophys; 1976 Mar; 173(1):362-74. PubMed ID: 769696
    [No Abstract]   [Full Text] [Related]  

  • 57. Derepression of isoleucine-valine biosynthetic enzymes and extracellular isoleucine accumulation in Serratia marcescens.
    Kisumi M; Komatsubara S; Chibata I
    J Biochem; 1972 Nov; 72(5):1065-73. PubMed ID: 4567661
    [No Abstract]   [Full Text] [Related]  

  • 58. Valine accumulation by alpha-aminobutyric acid-resistant mutants of Serratia marcescens.
    Kisumi M; Komatsubara S; Chibata I
    J Bacteriol; 1971 May; 106(2):493-9. PubMed ID: 4929861
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mutations in genes cpxA and cpxB of Escherichia coli K-12 cause a defect in acetohydroxyacid synthase I function in vivo.
    Sutton A; Newman T; McEwen J; Silverman PM; Freundlich M
    J Bacteriol; 1982 Aug; 151(2):976-82. PubMed ID: 7047501
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Control of acetohydroxy acid synthetase in Neurospora crassa.
    Takenaka S; Kuwana H
    J Biochem; 1972 Nov; 72(5):1139-45. PubMed ID: 4265245
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.